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1 Introduction

We study the approximate nearest neighbor (ANN) problem.

Definition 1.1 ((c, r)-approximate nearest neighbor problem). Consider the metric space (X,dist(·, ·)). Given a set
S ⊆ X of n points and an r ∈ R, and a failure probability f , construct a data structure Q such that upon receiving a
query y ∈ X , if ∃x ∈ S such that dist(x, y) ≤ r, return any point x′ ∈ S such that dist(x′, y) ≤ c · r, with probability
at least 1− f .

An important technique to solve ANN is using locality sensitive hashing (LSH), which are functions that map
close points to the same value and far points to different values with high probability.

Definition 1.2 (LSH Family). A family of functionsH = {h : X → Z} is (r, cr, p1, p2)-LSH if for all x, y ∈ X :

• dist(x, y) ≤ r ⇒ Prh∼H[h(x) = h(y)] ≥ p1.

• dist(x, y) > cr ⇒ Prh∼H[h(x) = h(y)] ≤ p2.

Given some (r, cr, p1, p2)-LSH family with p1 ≥ p2 and we would like to boost the probability p1 close to 1 and
diminish the probability p2 close to 0. Then we can solve (c, r)-approximate nearest neighbor problem in space
Õ(n1+ρ) and query time Õ(nρ) [IM98]. Here ρ is an important parameter of the LSH family defined as ρ =
log(1/p1)
log(1/p2)

, which determines the “quality” of the LSH families used. Constructing the LSH family with smaller
ρ yields more efficient ANN algorithms. Consequently, significant effort has been dedicated to determining
the optimal value of ρ for LSH.
We first study a lower bound on the parameter ρ for any LSH family presented in [MNP08]. They show that,
ρ ≥ 0.462

cs for any (r, cr, p1, p2)-LSH family, when X = {0, 1}d and the distance function is induced by the ℓs
norm. This work was followed by an improved lower bound of [OWZ14], which showed ρ ≥ 1

cs when the
(far) points are correlated. We then present an interesting observation of [AINR14], that this lower bound
does not translate to a lower bound for ANN. This is based on the observation that the dataset is assumed
to be correlated (structured) in the lower bound of [OWZ14], which can be exploited to construct better, data
dependent hash functions. For ℓ2 metric space, they achieved ρ ≤ (7/8c2).

2 Preliminaries

Theorem 2.1. [KMS98] For every t > 0

1√
2π
·
(
1

t
− 1

t3

)
· e−t2/2 ≤ Pr

X∼N (0,1)
[X ≥ t] ≤ 1√

2π
· 1
t
· e−t2/2

where N (0, 1) is the normal distribution with mean 0 and variance 1.
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Theorem 2.2. [JL84] For every d ∈ N and ε, δ > 0, there exists a distribution over linear maps A : Rd → Rlog(1/δ)/ε2

so that for every x ∈ Rd, one has PrA[∥Ax∥ ∈ (1 ± ε)∥x∥] ≥ 1 − δ. Moreover this map can be sampled in time
O(d log(1/δ)/ε2)

Theorem 2.3 (Jung’s theorem). Every subset of Rd of diameter ∆ can be enclosed by a ball of radius ∆/
√
2.

3 Lower Bound for LSH

In this section, we present a lower bound for the ρ parameter of LSH on the ℓs metric space as proven
in [MNP08]. Note that for binary vectors, the ℓ1-distance is equivalent to the Hamming distance. Also, for
any s ≥ 1, we can relate ℓs-distance to ℓ1-distance as ∥x− y∥s = ∥x− y∥1/s1 for any x, y ∈ {0, 1}d so proving
results for the Hamming metric space will give us lower bounds for the general case.
First we redefine the ρ parameter associated with the ℓs metric space as d→∞:

ρs = lim
d→∞

sup
{ log(1/p1)
log(1/p2)

: ∃(r, cr, p1, p2)-LSH familyH on ({0, 1}d, ∥·∥s)
}
.

The lower bound for LSH can be stated as follows.

Theorem 3.1 (Lower bound for LSH). For every (r, cr, p1, p2)-LSH family with c ≥ 1 on the ({0, 1}d, ∥·∥s) metric
space,

ρs ≥
e

1
cs − 1

e
1
cs + 1

≥ e− 1

e+ 1
· 1
cs
≥ 0.462

cs
.

Note that the function f(x) = ex−1
ex+1 is concave, which means that f(t · x) ≥ t · f(x) for t ∈ [0, 1]. Let t = 1

cs and
x = 1, the second inequality in Theorem 3.1 holds as

f
( 1
cs
)
=

e
1
cs − 1

e
1
cs + 1

≥ 1

cs
· f(1) = e− 1

e+ 1
· 1
cs
.

Now we sketch the proof of Theorem 3.1. Following the above observation, we simply need to show that
ρs ≥ e1/c

s−1
e1/c

s
+1

. We break down the proof into two main lemmas, the Hashing Lemma and the Random Walk
Lemma. First we prove the Hashing Lemma, which shows that if we choose a random point x ∈ {0, 1}d, then
the size of the hash bucket

H−1(H(x)) := {y ∈ {0, 1}d : h(x) = h(y)} for h ∼ H1

is small.

Lemma 3.2 (Hashing Lemma). LetH be an (r,R, p1, p2)-LSH family on the Hamming cube ({0, 1}d, ∥·∥1), fix a point
x ∈ {0, 1}d and let R < d/2, then

E|H−1(H(x))| ≤ 2d(p2 + e−
1
d
( d
2
−R)2),

We include a proof Appendix A for completeness. Next we need the Random Walk Lemma, which shows the
upper bound the probability of r-step random walks from a random point in a hash bucket that end up in the
same hash bucket. We need the following definition.

Definition 3.3 (Random walk on Hamming cubes). On a Hamming cube with vertices V = {0, 1}d and edges
E = {(u, v) ∈ V ×V : ∥u− v∥1 = 1}, a one-step random walk from a vertex x ∈ V transits to any of the n neighboring
vertices with equal probability:

Pr(u→ v) =

{
1
n , if (u, v) ∈ E,

0, otherwise.
1We follow the notation from the paper, but clarify that H is a random variable over H, and H−1H(x) is a random variable that

denotes a sampled hash bucket to which x can belong to.
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Lemma 3.4 (Random Walk Lemma). Let r be an odd integer. Given ∅ ̸= B ⊆ {0, 1}d, consider the random variable
QB ∈ {0, 1}d defined as follows: choose a point z ∈ B uniformly at random, and perform r-steps of the standard random
walk on the Hamming cube starting from z (choose y uniformly from the set of all strings which have hamming distance
1, with z). The point thus obtained will be denoted QB . Then,

Pr [QB ∈ B] ≤
(
|B|
2d

) e2r/d−1

e2r/d+1

.

We refer the reader to Appendix B for the proof.

Lemma 3.5 (Main Proposition). Let H be a (r,R, p1, p2)-sensitive hash family on the Hamming cube ({0, 1}d, ∥ · ∥1).
Assume that r is an odd integer and that R < d

2 . Then,

p1 ≤
(
p2 + e−

1
d
( d
2
−R)2

) e2r/d−1

e2r/d+1 .

Proof. Note that Pr[H(Wr(x) = H(x)] ≥ p1 by the first property of LSH. Taking expectation over the uniform
probability measure on {0, 1}d, we deduce that

p1 ≤ Ex∈{0,1}d Pr
H∼H,Wr

[H(Wr(x)) = H(x)]

= EH Pr
x,Wr

[
x ∈ {0, 1}d : Wr(x) ∈ H−1(H(x))

]
= EH

∑
k∈N

Pr
x,Wr

[
x ∈ {0, 1}d : Wr(x) ∈ H−1(H(x)) ∧H(x) = k

]
= EH

∑
k∈N

∑
x∈H−1(k)

1

2d
Pr
Wr

[
Wr(x) ∈ H−1(k)

]
= EH

∑
k∈N

|H−1(k)|
2d

∑
x∈H−1(k)

1

H−1(k)
Pr
Wr

[
Wr(x) ∈ H−1(k)

]
= EH

∑
k∈N

|H−1(k)|
2d

· Pr
Wr

[
QH−1(k) ∈ H−1(k)

]

≤ EH

∑
k∈N

|H−1(k)|
2d

·
(
|H−1(k)|

2d

) e2r/d−1

e2r/d+1

(Random Walk Lemma)

= EHEx∈{0,1}d

[
|H−1(H(x))|

2d

] e2r/d−1

e2r/d+1

≤ Ex∈{0,1}d

[
EH [|H−1(H(x))|]

2d

] e2r/d−1

e2r/d+1

(Jensen Inequality)

≤
(
p2 + e−

1
d
( d
2
−R)2

) e2r/d−1

e2r/d+1 (Hashing Lemma)

Then choosing R ≈ d
2 −
√
d log d and r ≈ R/c yields the lower bound ρs ≥ e1/c

s−1
e1/c

s
+1

with s = 1; for general s > 1,

the inequality follows from the relationship ∥x− y∥s = ∥x− y∥1/s1 over {0, 1}d.
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4 Data Dependent Hashing

Till now we have seen lower bounds on ρ for LSH, in context of approximate nearest neighbor search. For the
rest of the section, assume X = Rd and the distance is induced by the ℓ2 norm. In this section, when we say
∥ · ∥, we mean the ℓ2 norm.
In 2014, [AINR14] has given an approach of data-dependent hashing or two level hashing based approach for
(c, 1)-approximate nearest neighbor problem in Euclidean space.

Theorem 4.1. [AINR14] Given n points in Rd, in ℓ2 norm, there is an algorithm that solves (c, 1)-ANN problem with

1. Pre-processing time: Oc(n
2+ρ + nd log n)

2. Query time: Oc(n
ρ + d log n)

3. Space: Oc(n
1+ρ + d log n)

where ρ ≤ 7/(8c2) +O(1/c3) + oc(1).

Intuitively in this approach at first we are going to sample from some hash family to create hash buckets, that
is our first level hashing. And for each hash bucket we independently sample hash functions, depending on
the points on the bucket, which is second level hashing. Here we shall see the main ideas of [AINR14].
For the first level hashing the construction of [AI06] has been used, where in ℓ2 norm, ρ = 1/c2 + oc(1) has
been achieved. Below we state the formal statement of the theorem.

Theorem 4.2. [AI06] For every sufficiently large d and n, there is a hash familyH for ℓd2 so that,

1. h← H can be sampled in time, stored in space and computed in time tO(t) log n+O(dt), for t = log2/3 n.

2. For any two points u, v, the collision probability p(.) ofH only depends on ∥u− v∥, where,
I. p(1) ≥ L, where L = A

2
√
t(1+ϵ+8ϵ2)t/2

.

II. For all c > 1, p(c) ≤ U(c), where U(c) = 2
(1+c2ϵ)t/2

.

Here A ∈ (0, 1) is some absolute constant, and ϵ = Θ(t−1/2) = Θ(log−1/3 n).

Remark 4.3. The hash familyH is data independent hashing in the following sense that, for any two points in the input,
their collision probability only depends on the distance between them. More precisely if distance between two points are
c > 1, the collision probability is a function on c, which is U(c).

For the second level hashing they have come up with a new technique, called Gaussian hashing. In particular,
when all the data points are in a spherical shell of radius ηc and width O(1), they have got an improvement
on the value of ρ, compared to the work [AI06]. We shall see formal statement and proof idea in Section 4.1.

4.1 Gaussian Locality Sensitive Hashing

We now describe the Gaussian LSH scheme of [AINR14]. We wish to come up with a hashing scheme that can
give us an advantage over [AI06] for structured data. The structure that we impose is very natural: that the
dataset has a bounded diameter. Given this, we can invoke Theorem 2.3 to claim that the points lie on a thin
spherical shell of radius O (c) and width O (1). Formally speaking, they prove the following theorem. In what
follows, we give a proof sketch of the theorem.

Theorem 4.4. [AINR14] for sufficiently large c, every ν > 1/2 and 1/2 ≤ η < ν, there exists a (1, c, p1, p2)-sensitive
LSH familyHG for {

x ∈ Rd : ∥x∥ ∈ [ηc− 1, ηc+ 1]
}

in ℓ2 norm so that,
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1. p1 = exp(−oc,ν(d)), ρ =

(
1− 1

4η2

)
1

c2
+Oν

(
1

c3

)
+ oc,ν(1)

2. One can sample h← HG, in time exp(o(d)), store in space exp(o(d)) and compute in time exp(o(d)).

Proof. We begin by first constructing such a family on a spherical surface. In what follows, imagine that all the
input points lie on a hypersphere, and we want to be able to partition them efficiently into buckets. We do so
by proving the following theorem.

Theorem 4.5. [AINR14] For a sufficiently large c, every ν ≥ 1/2 and 1/2 ≤ η ≤ ν there exists an LSH family for
ηc · Sd−1 =

{
x ∈ Rd | ∥x∥ = ηc

}
with the ℓ2 norm that is (1, c, p1, p2)-sensitive, where

• p1 = exp(−oc,ν(d));

• one has
ρ =

ln(1/p1)

ln(1/p2)
=

(
1− 1

4η2

)
· 1
c2

+ lower order terms

Proof. Let ε > 0 be a positive parameter such that ε = o(1), ε = ω(d−1/2). Then, the following algorithm
describes how to sample h ∼ H.

Algorithm 1 Gaussian partitioning
1: P ← ∅
2: while

⋃
P ≠ ηc · Sd−1 do ▷ Eventually, P will be a partition of ηc · Sd−1

3: Sample w ∼ N (0, 1)d

4: S ←
{
u ∈ ηc · Sd−1 | ⟨u,w⟩ ≥ ηc · ε

√
d
}
\
⋃
P

5: if S ̸= ∅ then
6: P ← P ∪ {S}
7: end if
8: end while
9: Define h to be the function that maps a point u ∈ ηc · Sd−1 to the part of P that it belongs to

Now our goal is as follows. There are two points u, v ∈ ηc · Sd−1 with angle α between them. What is
the collision probability over the randomness of the hash function? This probability is exactly equal to the
probability that they land in the same bucket, given that one of them lands in a particular bucket, over the
randomness of the buckets.

Pr
h∼H

[h(u) = h(v)] =
Prw∼N (0,1)d [⟨u,w⟩ ≥ ηc · ε

√
d ∧ ⟨v, w⟩ ≥ ηc · ε

√
d]

Prw∼N (0,1)d [⟨u,w⟩ ≥ ηc · ε
√
d ∨ ⟨v, w⟩ ≥ ηc · ε

√
d]

(4.1)

We first wish to get a handle on the term highlighted in red. Observe that, ∥u∥ = ηc. Say û := u
∥u∥ . Then

⟨u,w⟩ ≥ ηcε
√
d =⇒ ⟨û, w⟩ ≥ ε

√
d =⇒

∑
j

ûjwj ≥ ε
√
d.

Recall that the coordinates wj ∼ N (0, 1). Thus, the LSH is a convex combination of independent Gaussian
samples, which is another Gaussian random variable (say X). By writing v = (û cosα + û⊥ sinα) ∥v∥, we can
replace the second inequality with a similar Gaussian random variable Y 2. This gives us

Pr
h∼H

[h(u) = h(v)] = Θ(1) ·
PrX,Y∼N (0,1)[X ≥ ε

√
d ∧ ε

√
d cosα ·X − sinα · Y ≥ ε

√
d]

PrX∼N (0,1)[X ≥ ε
√
d]

(4.2)

= Θ(ε
√
d) ·

PrX,Y∼N (0,1)[X ≥ ε
√
d cosα ·X − sinα · Y ≥ ε

√
d]

e−ε2d/2
. (using Theorem 2.1) (4.3)

2Here we have abused notation a little and treated a random variable the same as a sample from the distribution.
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Lemma 4.6. [AINR14] We can derive the following bounds on the numerator.

• (For bounding collision probability of far points.)

Pr
X,Y∼N (0,1)

[
X ≥ ε

√
d cosα ∧X − sinα · Y ≥ ε

√
d
]
= O

(
e−ε2d·(1+tan2 α

2
)/2

ε
√
d

)
(4.4)

• (For bounding collision probability of close points.) If 0 ≤ α < α0 for some constant 0 < α0 < π/2, then

Pr
X,Y∼N (0,1)

[
X ≥ ε

√
d cosα ∧X − sinα · Y ≥ ε

√
d
]
= Ω

(
e−ε2d·(1+tan2

α0
2
)/2

ε2d · tan α0
2

)
. (4.5)

Using Lemma 4.6 we can bound the collision probability in Eq. (4.1) as follows.

Lemma 4.7. [AINR14] One has

ln
1

Prh∼H[h(u) = h(v)]
≥ ε2d

2
· tan2 α

2
−O(1);

and if α < α0 for some constant 0 < α0 < π/2, then

ln
1

Prh∼H[h(u) = h(v)]
≤ ε2d

2
· tan2 α0

2
+ ln

(
ε
√
d · tan α0

2

)
+O(1).

Using Lemma 4.7 for the angles that correspond to distances 1 and c, one gets a value of ρ as claimed.

Now all we have to do is extend this construction to work with strips of O (1) width. This can be done using
the following two ideas.
Normalize points before hashing them. This allows us to use the construction above as it is for hashing. But
we need to ask: does it mess up the collision probability by a lot? The answer is no (for the distance regimes
we care about). This can be easily seen by considering the following identity for any two vectors u, v,

∥u/ ∥u∥ − v/ ∥v∥∥ = 1

∥u∥ ∥v∥

(
∥u− v∥2 − (∥u∥ − ∥v∥)2

)
Using this, one can check that for u, v ∈ {x ∈ Rd | ∥x∥ ∈ [ηc− 1, ηc+ 1]}:

• If ∥u− v∥ ≤ 1, then (ηc · ∥u∥/∥u∥ − v/∥v∥)2 ≤ (ηc)2

(ηc−1)2
≤ 1 +Oν

(
1
c

)
.

• If ∥u− v∥ ≥ c, then (ηc · ∥u∥/∥u∥ − v/∥v∥)2 ≥ (ηc)2

(ηc+1)2
(c2 − 4) ≥ c2 ·

(
1−Oν

(
1
c

))
.

Run the loop for some fixed (say exp(o(d))) times. This works because of an ε-net argument. Consider
approximating the volume of continuous spherical strip with a discrete subset. Identify spheres of very small
radius ε with it’s center. How many such points should be present in the discrete set to cover the entire
volume? The answer is the ratio of the volume of the entire shell to the volume of an ε-ball. This discrete set is
called an ε-net. It turns out that running the loop on line 2 exp(o(d)) times implies that the probability that the
buckets cover the shell is at least 1− exp(−d).
This concludes the proof.
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4.2 Two Level Hashing Algorithm

Now using the tools we have developed we are ready to give an two level hashing algorithm (or data depen-
dent hashing algorithm) for (c, 1)-ANN. At first let us look at the overview of the algorithm.
Say we have given n many input points fro Rd and S be the set of inputs.

• In the very first step we assume that we can reduce the dimension of the space Oc(log d), using Theo-
rem 2.2. For this we pay negligible amount of cost in the error and problem will be reduced to (c− 1, 1)-
ANN. But the advantage is, we can now perform all the arithmetic operations in Oc(log n) time and all
values of order exp(o(d)) is now noc(1).

• Without loss of generality, we assume we are solving (c, 1)-ANN inOc(log n) dimension. In the first step
we sample h ∼ H⊗k, for some suitable k, whereH is the family defined in Theorem 4.2. To get improved
bound on ρ, we introduced a new parameter τ and get the following relation between distance and
collision probability.

Distance 1 c τc

Collision probability n−1/(τc)2 n−1/τ2 n−1

• We get hash buckets B1, . . . , Bm and with high probability, diameter of each Bi is ≤ τc. Imposing Theo-
rem 2.3 we can assume each Bi is a ball of radius τc/

√
2.

• Focus on some fixed Bi. Say, ui is it’s center. We shift origin to ui to make the center of Bi to be 0. Say
si ∈ Bi is the nearest point to ui. Now we can break the ball Bi in a inner sphere P ′

i of diameter ≤ c − 1
and outer spherical shells of radiusO (c) and widthO (1). Say they are Pi0, . . . , PiT , for T = ⌈ τc√

2
− c

2⌉+1.

• Sample h′i0, . . . , h
′
iT ∼ Hk′

G for each of the spherical shells independently. In this case we get relation
between distance and collision probabilities as follows,

Distance 1 c

Collision probability n−(1−Ωτ (1))(1−1/τ2)/c2 n−1+1/τ2

• As we sampled two types of hash function independently, we get,

Distance 1 c

Collision probability n−(1−Ωτ (1))/c2 n−1

• So, ρ ≈ 1−Ωτ (1)
c2

. Putting τ =
√
2, we get the above bound that ρ ≤ (7/8c2).

In next page we state the formal algorithm. Finally set k to be the smallest positive integer so that (U(τc−1))k

Lk ≤
1
n . And choose k′j to be smallest positive integer so that for every u, v with ∥u∥, ∥v∥ ∈ [c/2 + j − 1, c/2 + j + 1]
and ∥u− v∥ ≥ c,

U(c)k Pr

h∼H
⊗k′

j
G

[h(u) = h(v)] ≤ 1

3n

Say given p ∈ S some data point and q be some query point.

• A1 : We iterate through p fo line 27 of Algorithm 2.

• A2 : Bh(q) ̸= ϕ and ∥q − sh(q)∥ ≤ c.

Consider the following two lemmas.

Lemma 4.8. [AINR14] If ∥p− q∥ ≥ c then Pr[A1] ≤ n−1.
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Lemma 4.9. [AINR14] When ∥p− q∥ ≤ 1, Pr[A1 ∨ A2] ≤ n−
(
1− 1

2τ2
+ 1

2τ4

)
1
c2

+Oτ (
1
c3

)+oc,τ (1).

Intuitively the above two lemmas say that,

• When ∥p− q∥ > c, with high probability, we shall not find p while iterating in hash buckets inside any of
the outer shells.

• When ∥p− q∥ ≤ 1, we shall hit p sometimes during the run of the algorithm with high probability.

Together with the lemmas and putting τ =
√
2 we achieve the desired upper bound on τ .

Algorithm 2 Two Level Hashing

Pre-processing (S, τ, T, k, k′j)

1: Sample h ∼ H⊗k whereH is from Theorem 4.2.
2: Get B1, . . . , Bm where Bi = {x : h(x) = i}.
3: for i = 1, . . . ,m do
4: while ∃ u, v ∈ Bi s.t. ∥u− v∥ > τc do
5: Bi ← Bi \ {u, v}
6: end while
7: if Bi ̸= ϕ then
8: ui ← the center of smallest enclosing ball of

Bi.
9: si ∈ Bi be the nearest point to ui.

10: for j = 0, . . . , T do
11: Pij := {p− ui : c/2 + j − 1 ≤ ∥p− ui∥ ≤

c/2− j + 1}
12: Sample h′ij ∼ H

⊗k′j
G for η = 1/2 + j/c

from Theorem 4.4.
13: B′

ijr := {x ∈ Pij : h
′
ij(x) = r}

14: end for
15: end if
16: end for

Query(q)

17: i← h(q).
18: if Bi = ϕ then
19: Return ⊥
20: end if
21: if ∥q − si∥ ≤ c then
22: Return si
23: end if
24: for j = 0, . . . , T do
25: if c/2 + j − 1 ≤ ∥q − ui∥ ≤ c/2− j + 1 then
26: r ← h′ij(q − ui)
27: for p ∈ B′

ijr do
28: if ∥q − (p+ ui)∥ ≤ c then
29: Return p+ ui
30: end if
31: end for
32: end if
33: end for
34: Return ⊥

5 Discussion and Future Work

Can we achieve even better parameters than what we have seen so far? Along this line, [BDGL16] introduced
the idea of locality sensitive filtering using random product codes (RPC). The idea is to pick an efficiently list
decodeable RPC over the surface of a sphere, and identify each hash bucket as the set of all vectors that decode
to a particular code word. They show that this can achieve better ρ parameter. Furthermore, recently [KL21]
show that this is optimal, when the data set is distributed on the surface of a sphere. Further, [AR15] showed
a lower bound for data-dependent LSH. They showed that even if the hashing is data-dependent, it must hold
that ρ ≥ 1

2c−1 − o(1).
On the side of conditional hardness for ANN, [Rub18] showed a SETH based lower bound for the problem.
Specifically they show that unless the strong exponential time hypothesis (SETH) is false, ∀δ > 0,∃ε > 0 such
that computing (1+ ε) approximation to bichromatic closest pair (the batch version of ANN) requires Ω

(
n2−δ

)
time. This implies a near linear time queries are essential for ANN with polynomial processing time.
In practice, recently the idea of hierarchical navigable small world graphs [MY20] has gained a lot of attention,
and has proved superior than LSH based techniques. The idea here is to build increasingly dense proximity
graphs with the data points as a set of vertices and perform random walks on them to converge to the approx-
imately closest point. We believe that there are lots of cool theoretical ideas to be exploited in this framework.
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A Proof Of the Hashing Lemma

Lemma A.1 (Hashing Lemma). Let H be an (r,R, p1, p2)-LSH family on the Hamming cube ({0, 1}d, ∥·∥1), fix a
point x ∈ {0, 1}d and let R < d/2, then

E|H−1(H(x))| ≤ 2d(p2 + e−
1
d
( d
2
−R)2),

9



Proof. We can divide all points in the hash bucket H−1(H(x)) into two parts: (1) {u : ∥u− x∥1 ≤ R} and (2)
{u : ∥u− x∥1 > R}. For each point x in part (1), we have PrH [H(x) = H(u)] ≤ 1; while for each point x in part
(2), we have PrH [H(x) = H(u)] ≤ p2 by definition of LSH. Thus we simply write

E|H−1(H(x))| =
∑

u∈{0,1}d
Pr
H
[H(u) = H(x)]

≤
∣∣∣{u ∈ {0, 1}d : ∥u− x∥1 ≤ R

}∣∣∣+ p2 ·
∣∣∣{u ∈ {0, 1}d : ∥u− x∥1 > R

}∣∣∣
=

⌊R⌋∑
k=0

(
d

k

)
+ p2 ·

d∑
k=⌊R⌋+1

(
d

k

)
.

Assumes that R < d
2 , the inequality in the Hashing Lemma follows from the estimation of binomial coefficients,∑

k≤ d
2
−a

(
d

k

)
≤ 2d · e−

a2

d .

B Proof of the Random Walk Lemma

Lemma B.1 (Random Walk Lemma). Let r be an odd integer. Given ∅ ≠ B ⊆ {0, 1}d, consider the random variable
QB ∈ {0, 1}d defined as follows:
Choose a point z ∈ B uniformly at random, and perform r-steps of the standard random walk on the Hamming cube
starting from z.(Choose y uniformly from the set of all strings which have hamming distance 1 from z) The point thus
obtained will be denoted QB . Then,

Pr [QB ∈ B] ≤
(
|B|
2d

) e2r/d−1

e2r/d+1

.

We will use the following facts and definitions from the Fourier analysis on the Hamming cube to prove the
above lemma.

Definition B.2 (Fourier Basis). Given S ⊂ {0, 1}d we define the following function WS : {0, 1}d → {−1, 1} as

WS(u) = (−1)
∑

j∈S uj

Definition B.3 (Inner Product). For any f, g : {0, 1}d → R we will define an inner product between them as

⟨f, g⟩ = 1

2d

∑
u∈{0,1}d

f(u)g(u)

• We define, f̂(S) := ⟨f,WS⟩

• We can see that ⟨WS1 ,WS2⟩ = 0 for S1 ̸= S2.

• Using this fact, we get that WS form an orthogonal basis hence we get the following decomposition

f =
∑
S⊂[d]

f̂(S)WS ,

which implies
⟨f, g⟩ =

∑
S⊆[d]

f̂(S)ĝ(S).
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We will asumme the following fact for every f : {0, 1}d → R, which follows from the Bonami-Beckner inequal-
ity ∑

S⊆[d]

ε2|S|f̂(S)2 ≤

 1

2d

∑
u∈{0,1}d

f(u)1+ε2

 2
1+ε2

.

Specializing to the indicator of B ⊆ {0, 1}d we get that

Definition B.4 (Bonami-Becker Inequality).

∑
S⊆ [d]

ε2|S|1̂B(S)
2 ≤

(
|B|
2d

) 2
1+ε2

.

(Proof of Random Walk Lemma). For this treat the functions from f : {0, 1}d → R as a vector in R2d where
fi = f(binary(i)). Let P be the transition matrix of the standard random walk on {0, 1}d, i.e. Puv = 1/d if
u and v differ in exactly one coordinate, Puv = 0 otherwise. By a direct computation we have that for every
S ⊆ {1, . . . , d},

PWS =

(
1− 2|S|

d

)
WS .

Since, WS is an eigenvector of P with eigenvalue 1− 2|S|
d . The probability that the random walk starting form

a random point in B ends up in B after r steps equals.

Pr [QB ∈ B] =
1

|B|
∑
a,b∈B

(P r)ab

=
2d

|B|
⟨P r1B,1B⟩

=
2d

|B|
∑

S⊆{1,...,d}

1̂B(S)
2

(
1− 2|S|

d

)r

≤ 2d

|B|
∑

S⊆{1,...,d}
|S|≤d/2

1̂B(S)
2

(
1− 2|S|

d

)r

(Since r is odd drop the negative terms)

Now for |S| ≤ d/2 we can apply the fact that e−x ≥ (1−x) to get e−
2|S|r

d ≥ (1− 2|S|
d )r, since both quantities are

positive, for |S| > d/2 the quantity (1 − 2|S|
d ) is negative hence its odd power would be negative and hence it

is less than e−
2|S|r

d

Pr [QB ∈ B] ≤ 2d

|B|
∑

S⊆{1,...,d}

1̂B(S)
2 · e−2r|S|/d

≤ 2d

|B|
·
(
|B|
2d

) 2

1+e−2r/d

(Bonami-Becker Inequality)

=

(
|B|
2d

) 1−e−2r/d

1+e−2r/d

.
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