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Abstract

This is a report written for an Independent Study on “Adiabatic Quantum Computing and Optimization” I
took under Prof. Shantanav Chakraborty in Monsoon 2021 at IIIT Hyderabad. The main references read are
Albash and Lidar [2], Denchev et al. [7] and some of the papers and articles cited around them. I also study a
couple of classical huristic optimization algorithms like Parallel Tempering, Tabu search, QMC, etc. and some
experimental attempts to find quantum speedups on a quantum annealer.
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1 Introduction

The most familiar model of quantum computation in terms of a universal set of gates was proposed by Deutsch
and Penrose [§] following the ideas of Paul Benioff and Richard Feynman for a quantum Turing machine (Benioff
[3], Benioff [4], Feynman [I0]), and for simulating physical systems which are quantum in nature using a ‘quantum’
machine, to circumvent the problem with the exponential size of the Hilbert space. A programmable computer is
a system based on some laws of physics, the initial state of which is programmable by us to represent the problem,
into the evolution of which (the system) we can encode our solution procedure (an algorithm), and reading out the



final state of the system (measurement) gives us the solution to the problem. Quantum computing is based on the
idea of a computational problem being encoded as a quantum system, evolving with a sequence of quantum gates
(Unitaries, in accordance with the axiom of quantum mechanics), similar to that encoded as a classical system
evolving with a sequence of classical logic gates.

Adiabatic quantum computing is another such framework where the initial state of the system is a Hamiltonian
whose ground state is easy to prepare, which evolves according to the adiabatic theorem to a final Hamiltonian whose
ground state encodes the solution to a computational problem. The adiabatic theorem guarantees that the system
will remain in the ground state of the instantaneous hamiltonian, given that the evolution takes place sufficiently
slowly. The idea to encode the solution to a computational problem into the ground state of a quantum Hamiltonian
appeared in 1998 by Brooke et al. [5], in trying to solve classical combinatorial optimization problem. This was called
Quantum Annealing. This was introduced as a classical ‘quantum inspired’ algorithm, akin to Simulated Annealing,
and made use of simulated quantum fluctuations and tunneling (similar to thermal fluctuations simulated by SA.)

In 2007 in a paper titled “Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation,”
Aharonov et al. [1] showed that Adiabatic quantum computation with non-stoquastic Hamiltonians is polynomially
equivalent to the circuit model (‘Standard Quantum Computation’.)

Quantum annealing was proposed as one of the first adiabatic quantum algorithm, to solve combinatorial
optimization problems. These problems can be notoriously hard, due to the vastness of the search space. The
original proposal was a ‘simulated quantum annealing,’” in which the evolution of a quantum system was simulated
on a classical computer, such that the final state contained the solution to a computational problem. [I3] and
Farhi et al. [9] showed that there is an advantage in using algorithms like these. It was thought that is large,
controlled, programmable quantum systems could be built (quantum computers,) then such advantages would
continue, ushering the era of quantum supremacy. (More on this in )

Companies like DWave have built physical devices, and considerable effort has gone into testing them. Although
small speedups for curated problems have been seen, a conclusive picture does not exist.

2 Adiabatic Quantum Computing

A computation in this model is specified by two Hamiltonians H; and Hy, such that the ground state of H; is easy to
prepare, and the ground state of H; represents the solution to our computational problem. The Hamiltonians have
to be local, i.e., they should only involve interactions between a constant number of particles. This requirement is
equivalent, in the circuit model, to only allowing gates acting on a constant number of qubits at a time. The running
time of the adiabatic computation is determined by the minimal spectral gap of all the Hamiltonians connecting
H; and Hy, given by

H(S) = (1—S)Hi+SHf (1)

where s(t) : [0,t¢] — [0, 1] is called the schedule, and t; is the annealing time.
The following definition of adiabatic quantum computing has been taken from Aharonov et al. [1].

Definition 2.1 (k-local Hamiltonian). A Hamiltonian H acting on n particles is called k-local H can be written
as y_ 4, Ha, where A runs over all the subsets of k out of n particles, and H, acts trivially on all but the particles
in A.

That is, for each A, H4 is a tensor product of a Hamiltonian on A, with identity on all the other particles.
Notice that for any constant k, a k-local Hamiltonian on n qubits can be described in 22*n* = poly(n) space,
whereas describing an arbitrary Hamiltonian requires roughly 22" space.

Definition 2.2 (Adiabatic Quantum Computation). A k-local adiabatic computation AC(n,d, H;, Hy, €) is specified
by two k-local Hamiltonians, H; and Hy acting on n d-dimensional particles, such that both Hamiltonians have
unique ground states. The ground state of H; is a tensor product state. The output is a state that is e-close in
lo-norm to the ground state of Hy. Let ¢y be the smallest time such that the final state of an adiabatic evolution
according to for time ¢y is e-close in ly-norm to the ground state of Hy. The running time of the
adiabatic algorithm is defined to be

cost =ty - max H(s) (2)



Notice that the definition of running time as defined in is invariant under the scaling of the Hamil-
tonians by some overall factors.

Theorem 2.3 (Adiabatic Theorem). Let H; and Hy be two Hamiltonians acting on a n-qubit quantum systems,
and consider the time dependent Hamiltonian as described in [Equation 1l Assume that for all s, H(s) has a unique
ground state. Then for any fixed § > 0, if
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then the final state of an adiabatic evolution according to H(s) for time ¢ is e-close in the l-norm to the ground
state of H.

The matrix norm is the spectral norm. A(H(s)) is the spectral gap, defined as the minimum eigenvalue gap
between the ground state and the first excited state of the instantaneous Hamiltonian.
Using the above definitions, Aharonov et al. [I] show the following theorem.

Theorem 2.4 (Equivalence of Adiabatic and Circuit Model Quantum Computation). Given a quantum circuit on
n qubits with L two qubit gates implementing a unitary U, and an € > 0, there exists a 5-local adiabatic quantum
computation AC(n + L,2, H;, Hy, €), whose running time is poly(L, %) and whose output after tracing out some
ancilla qubits is e-close in the trace distance to U [0®™). Moreover, H; and H; can be computed by a PTTM.

The runtime for this algorithm is O(e~ (39 [5+29) for any fixed § > 0.

Note that an adiabatic quantum algorithm can always be converted to a quantum circuit that can approximate
the adiabatic computation by discretizing the time dependent Hamiltonian for some finite sequence of time steps
and then using a standard Hamiltonian simulation algorithm to simulate the evolution.

3 Quantum Supremacy in the Adiabatic Setting and Computational
Efficiency of Quantum Annealing

The term ‘quantum supremacy’ was coined by John Preskill in [I8], where they described “the era of quantum
supremacy [as| when we will be able to perform tasks with controlled quantum systems going beyond what can
be achieved with ordinary digital computers.” This was motivated by the unproven belief that classical systems
(ordinary digital computers) can’t simulate highly entangled quantum systems efficiently, but a programmable
quantum system, by its nature, might be able to perform such tasks, surpassing what is possible with classical
computation. They go on to discuss the possibilities of constructing such a controlled quantum device, the possibility
of error correction, and what may or may not be possible with such a device, considering the vastness of the Hilbert
space, and the fact that some states are more easy to prepare than others.

Another beautiful piece on quantum supremacy is Harrow and Montanaro [I1], where they discuss various
approaches to defining and demonstrating a quantum speedup from complexity theoretic point of view. They point
out that quantum supremacy proposals are often based around sampling problems rather than decision problems,
where the computational task is to output samples from a desired distribution, rather than outputting a boolean
response (promise problems.) The strength of these proposals is that despite working with a restricted model of
quantum computation, such as boson sampling, random circuit sampling, adiabatic optimization, etc., they do
not need to assume that this specific model is hard to simulate classically. Rather, these can be based on well
formed complexity theoretic assumptions, such as the “non-collapse of the polynomial hierarchy,” or that “the exact
counting of exponentially large sets is harder than their approximate counting ( PostBPP # PostBQP ).” Here
‘Post’ indicates the respective complexity class with post-selection. They go on to discuss many other such, as well
as some fine-grained complexity assumptions, and the verification of quantum supremacy experiments.

Once we have quantum computers, it becomes necessary to benchmark and compare the performances of these
devices with other similar devices, as well as with various classical devices and algorithms. One common way in
which this is done in the gate model of quantum computing is by comparing what is known as query complexity
to the input, which is the number of times the circuit queries the input oracle. This makes the familiar theoretical
study of complexity possible because we can define asymptotic behaviour of our quantum algorithms in this model,
in terms of the size of input.



But this is not possible in cases where the hardware is specialized, analogue quantum computer capable of
running specific algorithms as continuous time evolution of a state with some Hamiltonian, which is exactly what
Quantum Annealers are. One solution to this issue is to compare time taken for the device to reach the solution or
a target solution in terms of physical time (the target solution bit is important in some cases where we don’t know
the actual minina and can’t be sure that we have indeed found the correct solution without exploring the whole
(exponential) search space.) Another method is to compare the energy requirements of these devices to reach the
same target ( which I think is more reasonable that directly measuring time.)

3.1 Types of Quantum Speedups

Rgnnow et al. [I9] thoroughly studied this and used their measures to study the D-Wave two device. They define
five different kinds of quantum speedups that might be possible.

1. Provable quantum speedup, where there exists a proof that no classical algorithm exists that can outperform
a given quantum algorithm. An example of this is Grover’s search algorithm, which is proven to have a
quadratic speedup over the best possible classical algorithm.

2. Strong quantum speedup, where we compare a quantum algorithm against the best possible classical algorithm,
which may or may not be explicitly known. This aims to capture the computational limitation of classical
computers.

3. Quantum speedup (without any adjectives), which compares a quantum algorithm against the best known
(available) classical algorithm. This is a less ambitious version of Strong quantum speedup. An example of
this is Shor’s algorithm. The notion of ‘best possible’ is time and community dependent.

4. Potential quantum speedup, where we compare a quantum algorithm to a specific or a set of classical algorithms.
An example of this is to simulate the time evolution of a quantum system, where the propagation of the wave
function on a quantum computer would be exponentially faster than a direct integration of Schrodinger’s
equation on a classical computer.

5. Limited quantum speedup, where we compare the quantum algorithm to its equivalent classical algorithm.
Such quantum algorithms follow the same algorithmic procedure as their classical counterpart, but on a
classical hardware. This definition allows for the existence of other classical algorithms that are already
better than the quantum algorithm. This is a weaker notion, useful when we have small machines capable
of performing some specific computational tasks, which is the case for presently available quantum annealers,
capable of performing come quantum adiabatic computing tasks. Most literature on comparing these machines
to classical ones follow this definition of a speedup.

3.2 Weak Strong Clustering

Denchev et al. [7] crafted an Ising minimization problem for the DWave 2X qubit topology (the chimera topology.
Refer to for more details of the hardware.) The problem is designed to have tall and thin barriers in
the energy landscape, a feature that could put quantum tunneling to a huge advantage when compared to classical
search techniques.

The problem description is as follows. A problem instance consists of a bunch of so called ‘weak strong cluster
pairs’ connected together. Each weak strong cluster pair consists of two chimera unit, one of which (right) has a
fixed local field of hy = —1, and all couplings (J) are set to 1. This makes the qubits ferromagnetically coupled.
The local field on the left cluster is weaker and serves as a bifurcation parameter. Its values are hy € [0, 0.44].



Figure 1: A weak strong cluster pair. (From Denchev et al. [7])

Using the weak strong cluster pairs as building blocks, larger problems are formed by connecting the strong
clusters to one another in a glassy fashion. The four connections between two neighboring strong clusters are all
set either to 1 (ferromagnetic) or -1 (antiferromagnetic), at random.
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Figure 2: From Denchev et al. [7]. Layout of several instances of the weak strong cluster network problem on the
DWave 2X processor. Shown are three different sizes with 296, 489 and 945 qubits. Each cluster consists of an eight
qubit unit cell of the Chimera graph. Black dots depict qubits subject to a strong local field h = —1 while the gray
dots represent qubits with the weak field h = 0.44. Blue lines correspond to strong ferromagnetic couplings (J = 1)
and red lines to strong antiferromagnetic couplings (J = —1). Note that the graphs are somewhat irregular due to
the fact that not all 1152 qubits are operational.

They ran the problem on the actual device, and compared the performance to SA and Quantum Monte Carlo.
They saw a ~ 108 factor quantum speedup compared to both SA and QMC for 945 variable instances. The authors
remark that although there are other classical heuristic algorithms that are comparable in performance to QA on
these devices, they should be significantly outperformed by quantum annealers as the number of qubits in those
devices increases and their quality improves.

4 Adiabatic Quantum Algorithms

4.1 Adiabatic Grover’s Search

The adiabatic version of Grover’s search exists with a provable quantum speedup. Assuming we know what Grover’s
search is in the circuit model and the problem is solves, following is a brief overview of adiabatic Grover’s search
and a proof of a quadratic quantum speedup. For proofs, see Albash and Lidar [2] section ITI-A.

For an n qubit system, The final Hamiltonian is defined as

Hy :=1—|m) (m| (4)

where |m) is the market state corresponding to the marked item. Here the corresponding states are labelled as
the binary representation of the index of the items. Node that H; is n-local. The initial Hamiltonian is defined as

Ho :=1—1¢) (¢| (5)

where |¢) is the uniform superposition state defined as

i
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Then, the time dependent Hamiltonian is given by



H(s):=(1—A(s))Ho + A(s)H,y (7)

where s = tL € [0,1] is the normalized time and A(s) is an appropriate schedule that can be tweaked to get a
reasonable adiabatic path that shows a quadratic speedup.

If the linear schedule A(s) = s is considered, this adiabatic algorithm scales the same way as the classical
algorithm, with minimum spectral gap

Amin = 27”‘/2 (8)
at s = %, and ty >

a2

Because the minimum gap only occurs at s = %, we can cleverly choose a schedule that slows down the
evolution only around that minimum spectral gap point, which being faster otherwise. This is an interesting
observation and becomes very important in AQC, because we can recover different complexities by altering the
schedule appropriately. This makes the choice and study of schedules very important.

In case of adiabatic Grover’s, quadratic speedup is recovered by solving the following adiabatic condition

0.H (s ! 0?H(s 0sH(s)||?
> 2 B, [ (EH 2T o)

where H and A are now schedule dependent. Solving for the schedule using an appropriate ansatz, one can
show that the following schedule recovers a quadratic speedup.

1 1
A(s) = = + —F———
(5) 2 2N -1
It can be shown that one can not optimize the schedule further and recover a speedup greater than a quadratic

one. This algorithm can also be extended to account for multiple marked states by just replacing the one marked
element |m) with the sum ) |m) (m|, where M is the index set of the marked items.

tan ((25 1) tan " VN = 1) (10)

4.2 Adiabatic Quantum Linear Systems Solver

Lin and Tong [I5] gave an adiabatic quantum algorithm to solve linear systems. It allows us to prepare a target
eigenstate of a given Hamiltonian if we have an initial state with a non-trivial overlap with the target eigenstate and
there is a reasonable lower bound on the spectral gap. Later they discretize the algorithm for d—sparse matrices
using a Hamiltonial simulation subroutine. They also review a couple of other papers that they follow with near
optimal query complexity in the circuit model.

Given oracle access to the entries of a matrix A € CV*¥ | and a quantum state |b) € CV, the problem asks to
-1
prepare the quantum state |z) = %, where |z) is the quantum state proportional to the solution of the linear

system Ax = b. This is called the quantum linear systems problem.

(Note: the notation of a quantum state belonging to the vector space over C is a bit loose. Oracle access to a
quantum state means that there is a unitary U, that can prepare the required quantum state as Uy |0) = |b).) They
also assume that the singular values of A are contained in [%, 1], where « is the condition number of A. Following
is a brief description of their algorithm.

Define
Qv =1—1[b) (b (11)
Then the initial Hamiltonian is
— (0 @) _
mi= (g 4)=aea (12)
The final Hamiltonian is
L 0 AQp\
= (4, “0) =10 01@ AQu + 1) (00 A0 (13



Note that the null space of H; is spanned by |0) |x) and |1) [b). The rest of the spectrum is separated from 0 by
a gap of % Then the adiabatic evolution is given by

H(f) = (1= f)Ho+ fH:. (14)

Using the vanilla (linear) schedule f(s) = s gives a time complexity of O(x?/¢). Using a method called AQC(p),
where the schedule is

K

fis) =~ (1= (s 1) ™7, pe(1,2) (15)

the time complexity can be reduced to O(k/e€), which is optimal in x but not in e. Using a method called

k—1

AQC(exp), the the time complexity can be further reduced to O (KZ log? (k) log® <1°ﬁ)), which is near-optimal in

€
both  and e, although with a high constant overhead (numerically shown in their paper.)
They also describe eigenstate filtering, which they use after preparing the initial state using adiabatic evolution
as described above, to filter out the required state and obtain the solution to the QLS.

5 Combinatorial Optimization

Optimization problems are concerned with the minimization or maximization of some objective function subject
to some constraints, or a decision that no such solution exists. Combinatorics is the mathematics of discretely
structured problems. Combinatorial optimization is an optimization that deals with discrete variables.

Definition 5.1. Combinatorial optimization is the process of searching for the maxima (or the minima) of an
objective function F', whose domain is a discrete (or can be reduced to a discrete set), and often consists of a large
configuration space (as opposed to an N-dimensional continuous space).

The space of possible solutions is typically too large to search exhaustively using pure brute force. In some cases,
problems can be solved exactly using Branch and Bound techniques. Otherwise, in many such problems specialized
algorithms (sometimes based on heuristics) that quickly rule out large parts of the search space or approximation
algorithms must be resorted to instead.

Some common examples of such problems include:

e Travelling Salesman Problem: Given the coordinates of N different cities, find the shortest possible path
that a salesman can take through all of them so as to visit each city exactly once.

e Bin Packing: Given a set of N objects each of a specified size s;, fit them all into as few bins as possible (of
a given fixed size B).

Other examples are integer linear programming and boolean satisfiability. Most of these problems (the decision
versions of them) are NP-hard. Some classical algorithms used to solve them are Random restart hill-climbing,
simulated annealing, genetic algorithms and Tabu search.

For the purpose of studying quantum adiabatic optimization, we are mostly interested in weighted max-2-SAT,
the Ising minimization problem and QUBO. These three problems are equivalent, and the instances can be converted
from one to another. Wikipedia/ tells more about this.

5.1 Weighted MAX-SAT

MAX-SAT extends the SAT problem to the problem of finding an assignment that maximizes the number of satisfied
clauses. Weighted MAX-SAT extends this further by adding weights to each clause and requiring a solution that
maximizes the sum of weights of the satisfied clause. The MAX-SAT problem is an instance of weighted MAX-SAT
where all weights are 1. These problems can either be solved by incomplete local search methods or complete branch
and bound methods.

These problems are NP-Hard and APX-Complete, with a PTAS implying P = NP.


https://en.wikipedia.org/wiki/Quadratic_unconstrained_binary_optimization

5.2 QUBO

QUBO stands for Quadratic Unconstrained Binary Optimization. It refers to the problem of minimizing the
following objective function. Let @ be a n x n matrix, z € {0,1}".

miny = 27 Qx = Z Qi % (16)
0,J

Here x is the binary decision variable. This problem is also NP-Hard.

5.3 Ising Minimization Problem

Most of this section is from the Stat Mech II course web page of Chang [6].

The Ising model is a mathematical model of an infinite lattice where each site can be in one of two states (spin
up/down, or :I:%) The Hamiltonian of the model includes two terms. h, the external field term, can split the
energies of the spin-down and spin-up state. The magnitude of h represents how strong the field is, so it tells you
how much higher in energy one spin is than the other. The sign of i indicates which of the two spins is preferred. J
is the interaction term. The sign of J tells us if the neighbouring spins want to align or anti-align. The magnitude
of J tells us by how much do they want to align or anti align. In the Ising model, only the nearest neighbour sites
interact with each other. This model can be of arbitrary dimensions. In a d-dimentional Ising model, every spin
has 2d nearest neighbours. Thus, Hamiltonian of the Ising model is

H==Y Jioic; = hjos. (17)
(i) j

site o
C 4

h
i

D |~
—D | ||

i

* |

. L T
Y

S>3

Figure 3: 2D Ising Model Image Source

The Ising minimization problem refers to the following problem.

Definition 5.2. Given the description of an Ising model as a Hamiltonian, find the spin configuration corresponding
to the minimum energy of the system.

This problem is NP-hard. Sometimes a random instance of this is also called a spin-glass, referring to ‘glassy’
(random) nature of the molecules of glass.

An instance of this problem can easily be converted to a QUBO instance, by replacing the spins as s; = 2z; — 1.

A lot of NP-Hard problems can be mapped on to Ising minimization problem. Lucas [I6] gives an overview of
this.


https://web.stanford.edu/~jeffjar/statmech/intro4.html

5.4 Optimization Algorithms
5.4.1 Simulated Annealing

Introduced in Kirkpatrick et al. [I4], Simulated Annealing is probably the most widely used heuristic algorithm for
global optimization of pseudo-boolean functions with little known structure. (A pseudo-boolean function is a map
f:{0,1} = R.) The general problem of such class is given by

K N
H(s) = — Z Z JjidiSin - S (18)

k=1j1...Jk

where N is the number of spins (problem size), s, € {£1} are the spin variables, and each Jj, . j, is a real scalar
called the coupling strength or coupling. § is the spin vector. H(S) can thought of as a Hamiltonian of a K-spin
system.

SA is a Monte Carlo algorithm, which was inspired by “a deep and useful connection between statistical me-
chanics (the behavior of systems with many degrees of freedom in thermal equilibrium at a finite temperature) and
multivariate or combinatorial optimization (finding the minimum of a given function depending on many param-
eters)” (from Kirkpatrick et al. [14].) It is designed to mimic the thermalization dynamics of a system in contact
with a slowly cooling reservoir. When the temperature of the system is high, the thermal fluctuations take charge
and the system can pick up enough energy for its configuration to come out of a local minima. As it decreases,
the system moves towards lower and lower energy states around its initial state. ‘Annealing’ is a 7000 year old
neolithic era technology of slowly cooling metals to change its properties to desired ones. The Simulated Annealing
algorithm uses the objective function of an optimization problem, which is to be minimized, instead of the energy
of a material.

The algorithm works as follows. The system starts with some random configuration at a temperature 7', and
enters a loop. In each iteration, from the initial energy configuration F;, the system makes a change in the spin
configuration (called a mowve) to a configuration of energy Eo. If the move leads to a lower energy configuration
(E2 < Ei), the new configuration is accepted with probability 1. If it leads to a higher energy configuration
(Fy > Ey), it is accepted with some probability less than one. This probability decreases exponentially with
the badness of the move, which is quantified to be proportional to the difference between the two energy levels,
AE = FE, — Ej.

AFE
Probability(Ey — Ez) =1— exp{kT} (19)
In a typical SA optimization, T starts from a high value and is gradually decreased according to a ‘schedule’.
At higher values of T', moves to higher energy configurations are more likely. As T tends to zero, they become more
and more unlikely. The parameter k is a constant that relates temperature to energy (in nature it is Boltzmann’s

constant.) [Algorithm 1| gives the pseudo code for SA.

10
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Figure 4: Landscape of a problem for Simulated Annealing. Tmage Source

The really cool part about this algorithm is that it can be used as a general framework to construct many

variations, optimized towards a specific application. Isakov et al. [I2] give highly optimized SA implementation for
certain types of Ising minimization problems. Their source code is available, and table 2 of their paper summarizes
the various optimizations in each implementation.

Algorithm 1 Simulated Annealing

1:

o

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

Inputs:  The cost function f(z) to be minimized; A function g(s) to generate random configurations from,
given an arbitrary seed s; Initial temperature T;

Outputs: The point of minima of the function z,,

Procedure:

r < random/()
x; < g(r)
idx < 0 > Sweeps Counter
while Stopping criteria not satisfied do > This could be number of sweeps, a target energy, or the global
minima
r < random()
xj + g(r)
if f(LL'J) < f(:l?l) then
Ti < Zj
else
if is satisfied then > Metropolis Criteria
T Ty
end if
end if
idx < idx + 1 > Update Sweeps Counter
T « temperature(idzr) > Update Temperature Appropriately
end while
return x;

5.4.2 Quantum Annealing

Quantum Annealing was proposed as a heuristic quantum enhanced optimization technique. The inspiration was
that quantum mechanics allows ‘tunneling’ out of a local energy barrier, and therefore the system can go to a nearby

11


https://towardsdatascience.com/optimization-techniques-simulated-annealing-d6a4785a1de7

lower energy configuration even if it does not have enough energy to climb the energy barrier.

Quantum Annealing is an adiabatic quantum computation, where the initial Hamiltonian is the equal superposi-
tion of all possible spin configurations, obtained in the computational basis with pauli o,. The final Hamiltonian is
of the form @ with the spin variables s; replaced by the pauli 0%, to account for the change to quantum
Ising model. The time dependent Hamiltonian is given by

N
H(t)=-A(t)Y o} + B(t)Hy; te[0,tf], (20)
j=1

where Hy is the Ising hamiltonian defined in Hyp = =3 5 Jijoio; — 32 hjoj and ty is the
annealing time. gives the pseudo code for QA.

Considerable scientific and industrial effort has gone into showing a ‘quantum advantage’ of QA over classical
algorithms. Denchev et al. [7] shows that for a curated problem called the ‘weak-strong clustering pairs’, QA can
outperform SA by a factor of ~ 10® for a 945 variable instance. But in some other cases, no advantage, or a
disadvantage has been demonstrated. A conclusive result remains elusive.

Figure 5| (taken from Denchev et al. [7]) summarizes the physics of QA very well.

12



Via(z))

Figure 5: Top: Quantum annealer dynamics are dominated by paths through the mean-field energy landscape that
have the highest transition probabilities. Shown is a path that connects local minimum A to local minimum D.
Bottom: Mean-field energy V(¢(7)) along the path from A to D, as defined by Eqs. (12) and (16). Finite-range,
thermally assisted tunneling can be thought of as a transition consisting of three steps: (i) the system picks up
thermal energy from the bath (red arrow up), (ii) the system performs a tunneling transition between the entry
and exit points (blue arrow), and (iii) the system relaxes to a local minimum by dissipating energy back into the
thermal bath (red arrow down). In transitions A — B or B — C, finite-range tunneling considerably reduces the
thermal activation energy needed to overcome the barrier. For long distance transitions in the lower part of the
energy spectrum, such as C' — D, the transition rate is still dominated by the thermal activation energy, and the
increase in transition rate brought about by tunneling is negligible.

5.4.3 Quantum Monte Carlo
5.4.4 Parallel Tempering

Marinari and Parisi [I7] introduced parallel tempering, also called replica exchange monte carlo markov chain
sampling. It is a variant of SA, where instead of running a single copy of the system’s evolution, multiple replicas

13



Algorithm 2 Quantum Annealing

1: Inputs: H;, Hy,ty > Initial and Final Hamiltonian, Annealing time
2: Outputs: 3, an n-dimensional vector containing boolean entries

3: Procedure:

4: Prepare the state |1);), the ground state of H;.

5: Fix a schedule s(t) : [0,t¢] — [0,1] > Could be taken as an input
6: H(s) < (1—s)H; +sHy

7. On a quantum annealer, adiabatically evolve [1;) to the final state |¢;) according to the time dependent

Hamiltonian H(s). >[Theorem 2.3| guarantees that the final state will be in the ground state of H if the
evolution (schedule) is slow enough.
8: Measure |¢f) in the computational basis and return the output as 3.

that are randomly initialized at different temperatures are run in parallel. Then, on the basis of a Metropolis
criterion, configurations at different temperatures are exchanged. This allows configurations at high temperatures
to be accessible to systems at lower temperatures, and thus systems previously stuck in a local minima are bumped
out to a higher energy configuration. This method works well for optimization problems with rugged energy
landscapes. Parallel tempering is shown to work much better for such situations.

In a sense, this brings SA closer to QA, as the system does not have to gain enough eneegy to get out of a local
minima. Although this comes with severe computational overhead.

5.4.5 Tabu Search

Tabu search is another meta-heuristic used to solve optimization problems. It combines local search strategies with
memory structures that are used to prohibit previously visited configuration points, and drive the search in a more
desirable direction. Although the algorithm also allows non-improving moves in cases where the search is stuck in
a valley or local minima.

Three types of memory structures used in Tabu search, short term, intermediate term, and long term. Short
term memory keeps track of recently visited configurations and can also be used to return to a specific configuration
to localize and intensify search, a technique known as intensification. Sometimes intensification can be used with
an intermediate term memory. The long term memory is used to drive the search to new directions, and explore
previously unexplored areas of the search space.

The general procedure followed for this procedure is:

1. Start with an arbitrary candidate solution.

2. Generate a neighbourhood set of the candidate solution.

Remove the Tabu solutions from the neighbourhood set.

Choose the best solution in the neighbourhood set and update the best solution.

Update the Tabu states and remove the expired states (states past the Tabu tenure) from it.

&S v W

Repeat from step 2 until the stopping criteria is met.

Simulated annealing can be thought of as a special case of Tabu search, where the Tabu is determined by the
metropolis criteria (the new solution is accepted based on a probability distribution.

6 Experimental Implementations of Quantum Annealers

DWave builds specialized quantum hardware that is used to solve optimization problems of the type
The programmer specifies the h; and J; ; values, and the annealing time (typically € [5,2000]us due to machine
constraints.) Other parameters such as the schedule can also be controlled.

The DWave quantum processing unit (QPU) is a lattice of interconnected qubits. The qubits they use are
superconducting qubits, where the ground states of a superconducting loop form the |0) and |1) states. The qubits
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are connected together via couplers in specific patterns. The building block of these devices are specific qubit
connectivity graphs (qubit topologies) joined together to form bigger devices. The initial devices had a chimera
topology, where the eight qubits formed a complete K4 4 graph connected together to form bigger structures. The

buildin block is shown in The connectivity is shown in

A 2

o -—A\vb‘y
o N
v {2

A
R —— )

Figure 7: Chimera network.

They have recuntly moved to the pegasus structure, which has a unit cell of P, graph. More on these topologies
can be found here. Most experiments on quantum speedups for quantum annealing, and to study physics of them,
including all of the ones described above has been done on these devices.
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https://docs.dwavesys.com/docs/latest/c_gs_4.html
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Figure 8: A pegasus unit cell network

It should be noted that these annealers don’t solve the exact problem specified in the problem Hamiltonian. A
DWave machine can only represent a discrete subset numbers between [—1, 1] using some finite precision (the value

of the local fields h; and the couplers J;; as in [Equation 17)). Let

I'= {_]-a -1+ ’y_l? -1+ 27_17 EREX _’7_1)07’7_1727_15 ) 1- ’7_1’ 1} (21)
for some integer v > 1 (for DWave v ~ 30). Whenever a minimization problem is sent to a DWave machine, it

normalizes the matrix entries and converts each entry of the matrix to the closest number in this range. That is
the problem which is then solved by the annealer.
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