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Chapter 1

Introduction to Lattices

Lattices are mathematical objects that have been studied since the time of Gauss, Lagrange, and Minkowski,
starting in the 18th century. They found numerous applications in cryptanalysis, post-quantum cryptog-
raphy, integer programming, coding theory and computational number theory.

Definition 1.0.1 (Lattice). A lattice is a discrete ablelian sub-group of Rd, for some positive integer d. Equiva-
lently, given a set {⃗b1, . . . , b⃗n} ⊂ Rd of linearly independent vectors over R, the set of all integer linear combina-
tions of these vectors

L(⃗b1, b⃗2, · · · , b⃗n) :=

∑
j∈[n]

aj b⃗j : ∀j ∈ [n], aj ∈ Z

 (1.0.1)

is called a lattice.

The set {⃗b1, . . . , b⃗n} is called the basis of the lattice. We usually denote the matrix formed by stacking the
basis vectors as

B :=

Ü ...
... . . .

...
b⃗1 b⃗2 . . . b⃗n
...

... . . .
...

ê
d×n

(1.0.2)

and the lattice generated by B as L(B) := {Bz⃗ : z⃗ ∈ Zn}.
The dimension of the ambient space d is called the dimension of lattice and the integer n is called the
rank of the lattice. A lattice is called full-rank if its dimension is same as its rank (n = d). Clearly, a lattice
is a discrete structure.

Definition 1.0.2 (Span of a lattice). For a lattice L(B), its span is span of its basis vcetors, that is

span(L(B)) :=

ß
Bz⃗ : z⃗ ∈ Rn

™
It is easy to see that the set in eq. (1.0.1) is an abelian group under vector addition.

Lemma 1.0.3. The tuple (L(B),+) (eq. (1.0.1)) forms an abelian group. Here + is vector addition over Rd.

Proof. We check each property of the group axioms, which follow trivially from the properties of addition
over Rn.

This chapter is based on lectures 1 and 2.
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• Closed under addition: Given two elements, u⃗ =
∑

j yj b⃗j and v⃗ =
∑

j zj b⃗j in L(B), their addition
u⃗+ v⃗ =

∑
j(yj + zj )⃗bj is also in L(B).

• Existence of additive unity: The zero vector 0⃗ = (0, . . . , 0)⊤ ∈ L(B).

• Existence of additive inverse: For any u⃗ =
∑

j yj b⃗j , there is −u⃗ =
∑

j(−yj )⃗bj ∈ L(B), and u⃗ +

(−u⃗) = 0⃗.

• + commutes: ∀u⃗, v⃗ ∈ L(B), u⃗+ v⃗ = v⃗ + u⃗.

1.1 Fundamental Parallelepiped

Definition 1.1.1 (Fundamental Prallelepiped). For a lattice L(B) of rank n, we define its fundamental paral-
lelepiped as

P(B) := {Bx⃗ : x⃗ ∈ [0, 1)n} (1.1.1)

Lemma 1.1.2. Translates of P(B) by lattice vectors, i.e. the set S := {v⃗ + P(B) : v⃗ ∈ L(B)} is a tiling of Rd.

The proof is left as an exercise.

Lemma 1.1.3. Let L be a lattice of rank n, and B = {⃗b1, . . . , b⃗n} ⊂ L be a linearly independent set of n lattice
vectors. Then B forms a basis of L if and only if

P (⃗b1, . . . , b⃗n) ∩ L = {⃗0}

Proof. ( =⇒ ) We prove this by contradiction. Assume B form a basis of L. Let u⃗ ̸= 0⃗ ∈ P (⃗b1, . . . , b⃗n)∩L.
Since B is a basis, we know that there exists some non-zero x⃗ ∈ Zn and y⃗ ∈ [0, 1)n such that

u⃗ = x1⃗b1 + . . .+ xnb⃗n = y1⃗b1 + . . .+ ynb⃗n

=⇒ (x1 − y1)⃗b1 + . . .+ (xn − yn)⃗bn ̸= 0⃗.

But B is linearly independent, so this is a contradiction. Thus P (⃗b1, . . . , b⃗n) ∩ L = {⃗0}.
(⇐= ) We prove this by contradiction. Assume P (⃗b1, . . . , b⃗n) ∩ L = {⃗0}. Let u⃗ ̸= 0⃗ ∈ L but u⃗ is not gen-
erated by integer combinations of b⃗1, . . . , b⃗n. Since L has rank n, and b⃗1, . . . , b⃗n are linearly independent,
∃x⃗ ∈ Rn \ Zn : u⃗ = x1⃗b1 + . . . + xnb⃗n. Consider the vector u⃗′ =

∑n
i=1(xi − ⌊xi⌋)⃗bi. We know that u⃗ ∈ L,

and ∀i ∈ [n] : (−⌊xi⌋)bi ∈ L. Since L is closed under addition, u⃗′ ∈ L. Also, ∀i ∈ [n] : xi − ⌊xi⌋ ∈ [0, 1).
Thus u′ ∈ P (⃗b1, . . . , b⃗n) ∩ L. By our assumption u⃗′ = 0⃗. So, xi − ⌊xi⌋ = 0 for all i, which implies x⃗ ∈ Zn.
This contradicts our assumption.

1.2 Equality of Lattices

How do we decide if the lattices generated by two basis B1 and B2 are the same (i.e., L(B1) = L(B2))?
Observe that for a basis B, the following operations leave the lattice generated by B unchanged:

• Adding of an integer multiple of basis vector to another: b⃗i ← b⃗i + k⃗bj for some k ∈ Z.

• Swapping two basis vectors: b⃗i ↔ b⃗j .
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• Negating a basis vector: b⃗i ← −b⃗i.

This is true because the new set of basis generated after each of these operations can generate the original
set of basis vectors by integer linear combinations. We can formalize this notion using linear algebraic
properties of the basis matrix.

Definition 1.2.1 (Unimodular Matrix). A matrix U ∈ Zn×n is called unimodular if det(U) = ±1.

Lemma 1.2.2. U ∈ Zn×n =⇒ U−1 ∈ Zn×n and U−1 is unimodular.

Proof. Note that, by generalized Cramer’s rule,

(U−1)ij =
(adj(U))ij
det(U)

.

Since the entries of adj(U) are integers ((−1)i+j times the (j, i)-minor of U ), and det(U) = ±1, U−1 ∈
Zn×n. Moreover, det(I) = 1 = det(UU−1) = det(U) det(U−1) =⇒ U−1 is unimodular.

Now we are ready to decide if two basis are equivalent.

Lemma 1.2.3. Two basis B1, B2 ∈ Rd×n are equivalent (i.e. L(B1) = L(B2)) if and only if B2 = B1U , for some
unimodular matrix U .

Proof. ( =⇒ ) Let L(B1) = L(B2). Then, each column of B1 is in L(B2), that is, ∀j ∈ [n] ∃x⃗ ∈ Zn : (B1)j =
B2x⃗. So, B1 = B2U for some U ∈ Zn×n (whose columns are the corresponding x⃗). By a similar argument,
there is a V ∈ Zn×n so that B2 = B1V = B2UV . Note that B⊤

2 B2 ∈ Rn×n is a square matrix, and hence
det(B⊤

2 B2) is well defined.

det(B⊤
2 B2) = det((B2UV )⊤B2UV )

= det(V ⊤U⊤B⊤
2 B2UV )

= det(V ⊤) det(U⊤) det(B⊤
2 B2) det(U) det(V ) determinant of product is product of determinants.

=⇒ (det(U) det(V ))2 = 1

=⇒ (det(U) det(V )) = ±1.

Since U, V are integer matrices, the above implies that det(U), det(V ) ∈ {±1}, and thus they are unimod-
ular.
( ⇐= ) Suppose B2 = B1U for some unimodular matrix U . Then, B2U

−1 = B1, and U−1 is unimodular
by lemma 1.2.2. By definition of matrix multiplication, each column of B2 is integer combination of
columns of B1. So, L(B2) ⊆ L(B1). Similarly, L(B2) ⊆ L(B1). Hence, L(B1) = L(B2).

1.3 Determinant of a Lattice

Definition 1.3.1 (Determinant of a Lattice). Let L = L(B) be a lattice of rank n. We define its determinant
det(L) as the n-dimensional volume of P(B). Equivalently1,

det(L) =
»
det(B⊤B)

1This is proved in section 1.6
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Note that if the lattice is full-rank, then B is a square matrix and det(L) = |det(B)|. Determinant of a
lattice is well-defined. Say, we have another basis B′ for L. By lemma 1.2.3, there exists a unimodular
matrix U such that B′ = BU . Then,

det(B′⊤B′) = det(U⊤B⊤BU) = det(U⊤) det(U) det(B⊤B) = det(B⊤B) since, det(U) = ±1.

The determinant of a lattice is a measure of how dense a lattice is. The lesser the determinant, the denser
the lattice is. To see why, observe that the density of Lwould be inversely proportional to the volume of
the fundamental parallelepiped.

density(L(B)) ∝ 1

Voln(P(B))
=

1

det(L)
.

Consider an n-dimensional ball of radius R > 0 (in the ℓ2 norm) centered at the origin, denoted Bn2 (R).
As R→∞, the number of lattice points inside the ball,

|L(B) ∩ Bn2 (R)| → Voln(Bn2 (R))

Voln(P(B))
.

In fact, we can prove the following.

Theorem 1.3.2. Let L(B) : B ∈ Rn×n be a lattice of rank n. Then for any ε > 0, there is an R := R(ε, n,B)
such that

(1− ε)
Voln(Bn2 (R))

Voln(P(B))
≤ |L(B) ∩ Bn2 (R)| ≤ (1 + ε)

Voln(Bn2 (R))

Voln(P(B))
(1.3.1)

1.4 Shortest Non-Zero Vector and Towards Minkowski’s First Theorem

Given a set of lattice vectors, we would like to define a notion of length and distance. We define the
length of a lattice vector to be the Euclidean norm of the vector. For x⃗ ∈ Rd, we denote its length by
∥x⃗∥ :=

»∑n
i=1 x

2
i . Given two vectors x⃗, y⃗ ∈ Rd, define the Euclidean distance between them to be

∥x⃗− y⃗∥.

Definition 1.4.1 (Successive minima). Let L be a lattice of rank n. For i ∈ [n], define the i-th successive
minima as

λi := inf{R|dim (span (L ∩ Bn(R))) ≥ i} (1.4.1)

Note that λ1(L) is the length of the shortest non-zero vector of the lattice. Observe that equivalently,
λ1(L) := min{∥x⃗ − y⃗∥ : x⃗, y⃗ ∈ L and x⃗ ̸= y⃗}. The most important computational lattice problem is the
problem of finding the shortest non-zero lattice vector.

Theorem 1.4.2 (Blichfeldt’s Theorem). For any full rank lattice L ⊆ Rn and any measurable set S ⊆ Rn such
that Voln(S) > det(L), there exist distinct points z⃗1 ̸= z⃗2 ∈ S such that z⃗1 − z⃗2 ∈ L.

Proof. Let B be a basis of L. Note that {x⃗ + P(B) : x⃗ ∈ L} is a partition of Rn (lemma 1.1.2). For x ∈ L,
define Sx⃗ = S ∩ (x⃗+ P(B)). So we have that

Voln(S) =
∑
x⃗∈L

Voln(Sx⃗).

Also define Ŝx⃗ := Sx⃗ − x⃗. Clearly, Ŝx ⊆ P(B), and Voln(Ŝx⃗) = Voln(Sx⃗). So,∑
x⃗∈L

Voln(Ŝx⃗) =
∑
x⃗∈L

Voln(Sx⃗) = Voln(S) > Voln(P(B)).
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So, there must be x⃗ ̸= y⃗ ∈ L for which Ŝx⃗ ∩ Ŝy⃗ ̸= ϕ. Let z⃗ ∈ Ŝx⃗ ∩ Ŝy⃗. Then, by definition we have that
z⃗ + x⃗ ∈ Sx⃗ and z⃗ + y⃗ ∈ Sy⃗, and for these points (z⃗ + x⃗)− (z⃗ + y⃗) = x⃗− y⃗ ∈ L.

Notice that the bound in theorem 1.4.2 is tight.
We call a set S ⊆ Rn centrally symmetric if x⃗ ∈ S =⇒ −x⃗ ∈ S. We call a set S ⊆ Rn convex if for any
x⃗, y⃗ ∈ S, λx⃗ + (1 − λ)y⃗ ∈ S for all λ ∈ [0, 1]. Using these notions, we can state Minkowski’s convex body
theorem, from which Minkowski’s first theorem follows.

Theorem 1.4.3 (Minkowski’s Convex Body Thorem). Let L be a full rank lattice of rank n. For any centrally
symmetric convex set S ⊂ Rn, if Vol(S) > 2n det(L), then S contains a non-zero lattice point.

Proof. Define Ŝ =
1

2
S := {x⃗ : 2x⃗ ∈ S}. Then, Vol(Ŝ) =

1

2n
Voln(S) > det(L).

By theorem 1.4.2, there is z⃗1 ̸= z⃗2 ∈ Ŝ so that z⃗1 − z⃗2 ∈ L. Also, 2z⃗1, 2z⃗2 ∈ S. Because S is centrally

symmetric, −2z⃗2 ∈ S. Because it is convex,
2z⃗1 − 2z⃗2

2
= z⃗1 − z⃗2 ∈ S.

We would also need the following bound.

Lemma 1.4.4. The volume of an n-dimensional ball of radius r, Voln(B(⃗0, r)) ≥
Å

2r√
n

ãn
Proof. Clearly, B(⃗0, r) contains the cube

ß
x⃗ ∈ Rn : |xi| <

r√
n

™
. Therefore, the volume of the ball is at

least the volume of this cube.

Theorem 1.4.5 (Minkowski’s First Theorem). For any full rank lattice L of rank n, λ1(L) ≤
√
n(det(L))1/n.

Proof. By definition, B(⃗0, λ1(L)) does not contain any non-zero lattice point. From (the converse of)
theorem 1.4.3 and lemma 1.4.4Å

2λ1(L)√
n

ãn
≤ Voln(B(⃗0, λ1(L))) ≤ 2n det(L)

Theorem follows from this.

1.5 Gram-Schmidt orthogonalization

The Gram-Schmidt orthogonalization (GSO) takes linearly independent vectors b⃗1, ..., b⃗n ∈ Rd as input
and computes an orthogonal basis b⃗∗1, ..., b⃗

∗
n such that span(⃗b1, ..., b⃗j) = span(⃗b∗1..., b⃗

∗
j ) for all j = 1, ..., n.

The idea of GSO is that we compute the vectors b⃗∗1, ..., b⃗
∗
n in order such that b⃗∗i is the component of b⃗i that

is orthogonal to span(⃗b1, ..., b⃗i−1) = span(⃗b∗1..., b⃗
∗
i−1). This can be obtained by subtracting all components

of b⃗1, ..., b⃗i−1 from b⃗i and call the remainder b⃗∗i . Formally the method is as follows:

Remark 1.5.1. Note that in generalL(B) ̸= L(B∗), i.e., B∗ may not be a basis for the latticeL(B). This is because
the coefficient µi,j on Line 3 may not be an integer in general. For example, for basis B = [(2, 0)T, (1, 2)T]], the
orthogonal basis B∗ = GSO(B) = [(2, 0)T, (0, 2)T]], is not a lattice basis because the vector (0, 2)T does not
belong to the lattice L(B).
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Algorithm 1 Gram-Schmidt orthogonalization (GSO)

Input: Basis B = [⃗b1, ..., b⃗n] ∈ Rd×n

Output: Orthogonal basis B∗ = [⃗b∗1, ..., b⃗
∗
n] ∈ Rd×n

1: Set b⃗∗1 = b⃗1
2: for i = 2 to n do

3: b⃗∗i = b⃗i −
i−1∑
j=1

µi,j b⃗
∗
j where µi,j =

⟨⃗bi ,⃗b∗j ⟩
⟨⃗b∗j ,⃗b∗j ⟩

=
⟨⃗bi ,⃗b∗j ⟩
∥⃗b∗j∥2

4: end for

Remark 1.5.2. Recall that the fundamental parallelepiped associated to a lattice basis B ∈ Rd×n is the set of points

P(B) =
{
Bx⃗ : x⃗ ∈ [0, 1)n

}
, (1.5.1)

and the determinant of lattice L(B), denoted by det(L), is given by the n-dimensional volume Vol(P(B)). By
some linear algebraic properties, Vol(P(B)) is given by

Vol(P(B)) =

n∏
i=1

∥⃗b∗i ∥, (1.5.2)

and so we have

det(L) = Vol(P(B)) =
n∏

i=1

∥⃗b∗i ∥, (1.5.3)

1.6 A proof of the formula of determinant of a lattice.

It is stated earlier without proof that det(L) =
√

det(BTB). We now provide a proof.

Theorem 1.6.1. For any lattice basis B = [⃗b1, ..., b⃗n] ∈ Rd×n, we have

det(L) =
»
det(BTB) (1.6.1)

Proof. Let B∗ = [⃗b∗1, ..., b⃗
∗
n] = GSO(B). By Line 3 of Algorithm 1, we have b⃗i = b⃗∗i +

i−1∑
j=1

µi,j b⃗
∗
j for each

i = 1, ..., n. In matrix notation, we can write this as B = B∗U for some upper triangular matrix U with
1’s on the diagonal and Uj,i = µi,j for all j < i. Note that det(U) = 1 = det

(
UT
)

since the determinant of
a triangular matrix is the product of its diagonal elements, which is 1 for U .
It follows that»

det(BTB) =

…
det
(
UT(B∗)TB∗U

)
=

…
det
(
UT
)
det
(
(B∗)TB∗

)
det(U) =

…
det
(
(B∗)TB∗

)
. (1.6.2)

Since the columns of B∗ are orthogonal, we have

(B∗)TB∗ = diag(∥⃗b∗1∥2, ..., ∥⃗b∗n∥2), (1.6.3)

and so

det
(
(B∗)TB∗

)
=

n∏
i=1

∥⃗b∗i ∥2. (1.6.4)
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Combining (1.6.2), (1.6.4), and (1.5.3) gives»
det(BTB) =

Ã
n∏

i=1

∥⃗b∗i ∥2 =
n∏

i=1

∥⃗b∗i ∥ = det(L) (1.6.5)

as desired.

1.7 Lower bound on the shortest vector

Theorem 1.7.1. Let L be a lattice with basis B = [⃗b1, ..., b⃗n], and let B∗ = GSO(B) = [⃗b∗1, ..., b⃗
∗
n]. Then the

length λ1(L) of the shortest vector satisfies λ1(L) ≥ min
1≤i≤n

∥⃗b∗i ∥.

Proof. It sufficies to show that ∥v⃗∥ ≥ min
1≤i≤n

∥⃗b∗i ∥ for each non-zero lattice vector v⃗ ∈ L. Let v⃗ =
n∑

i=1

xi⃗bi ∈ L

be a non-zero lattice vector, where xi ∈ Z. Since v⃗ is non-zero, it has a non-zero coefficient xi. Let k be
the largest index such that xk ̸= 0, then

v⃗ =
k∑

i=1

xi⃗bi =
k∑

i=1

xi

Ñ
b⃗∗i +

i−1∑
j=1

µi,j b⃗
∗
j

é
= xk b⃗

∗
k +

k−1∑
i=1

xi⃗b
∗
i +

k∑
i=1

i−1∑
j=1

µi,j b⃗
∗
j . (1.7.1)

It follows that
πk(v⃗) := π

span(b̃1,...,b̃k−1)
⊥(v⃗) = π

span(b̃∗1,...,b̃
∗
k−1)

⊥(v⃗) = π
b⃗∗k
(v⃗) = xk b⃗

∗
k (1.7.2)

where πk(v⃗) is the component of v⃗ in the direction of b⃗∗k. Therefore, we have

∥v⃗∥ =
∥∥∥πk(v⃗) + πspan(b̃∗1,...,b̃∗k−1)

(v⃗)
∥∥∥ ≥ ∥πk(v⃗)∥ = ∥xk b⃗∗k∥ = |xk|∥⃗b∗k∥ ≥ ∥⃗b∗k∥ ≥ min

1≤i≤n
∥⃗b∗i ∥, (1.7.3)

where the second last inequality follows from the fact that xk is a nonzero integer, i.e. |xk| ≥ 1.
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Chapter 2

Lenstra Lenstra Lovász Algorithm

The LLL algorithm [LLL82] is the most important lattice algorithm known. It can be used to find the basis
of a lattice, given some generating set, as a basis reduction algorithm, and to approximate the shortest
non-zero lattice vector in polynomial time. In this chapter, we will see all of these applications.
Similar to vector space, we can define a lattice via a generating set of vectors. Given a⃗1, ..., a⃗N ∈ Zd, we
define

L(⃗a1, ..., a⃗N ) :=

{
N∑
i=1

xia⃗i : xi ∈ Z

}
. (2.0.1)

Remark 2.0.1. Note that unlike basis, the vectors a⃗1, ..., a⃗N are not necessarily independent. Specifically, N may
be larger than d.

Remark 2.0.2. Without loss of generality, we can take vectors to be arbitrary rational vectors since we can scale the
lattice by the lowest common multiple of all the denominators involved and obtain an isomorphic lattice. However,
we cannot allow vectors to be arbitrarily real vectors.

Goal: Given a set of vectors a⃗1, . . . , a⃗N ∈ Zd generating L, we would like to find a basis of L(⃗a1, . . . , a⃗N ).

2.1 LLL as a basis finding algorithm

Note that for d = 1, we haveL(a1, . . . , aN ) = gcd(a1, . . . , aN )·Z, and so the basis is simply gcd(a1, . . . , aN ).

Example 2.1.1. When d = 1 with N = 2, this can be found using the Euclidean algorithm. We use the following
example to illustrate this

gcd(264, 936) = gcd(144, 264) = gcd(120, 144) = gcd(24, 120) = gcd(0, 24) = 24. (2.1.1)

For d = 1 with general N ≥ 3, we progressively find pairs of numbers (xi, yi) and replace them with
(xi+1, yi+1) such that

• gcd(xi+1, yi+1) = gcd(xi, yi)

• (xi+1, yi+1) is “sufficiently” less than (xi, yi)

This chapter is based on lectures 2, 3 and 4.
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This can be done by picking an xi and updating each (xi, yi) to (xi, ri) where

ri ∈
ß
−
õ
xi − 1

2

û
, . . . , 0, 1, . . . ,

⌊xi
2

⌋™
(2.1.2)

Example 2.1.2. Consider computing g = gcd(468, 366, 552, 738, 822, 966, 264). Using 468 as the divisor, we
update the pairs (468, 366)→ (468,−102), (468, 552)→ (468, 84), ..., (468, 264)→ (468,−204) and obtain

g = gcd(468,−102, 84,−198,−114, 30,−204). (2.1.3)

Using -102 as the divisor and performing similar updates, we get

g = gcd(−102, 468, 84,−198,−114, 30,−204) = gcd(−102,−42,−18, 6,−12, 30, 0). (2.1.4)

Removing 0 from the list and using 6 as the divisor yields

g = gcd(6,−102,−42,−18, 6,−12, 30) = gcd(6, 0, 0, 0, 0, 0, 0) = 6, (2.1.5)

and we conclude that gcd(468, 366, 552, 738, 822, 966, 264) = 6.

Formally Euclid’s GCD algorithm is as follows.

Algorithm 2 Euclid’s GCD Algorithm
INPUT: Given n integers a1, . . . , an.
OUTPUT: gcd(a1, . . . , an)

1: Ensure a1 ̸= 0 by swapping.

Reduction Step:
2: for i = 2 . . . , n do
3: ri ← ai mod |a1|

4: if ri >
|a1|
2

then
5: ri ← ri − |a1|
6: end if
7: ai ← ri
8: end for
9: Drop all the zero elements.

10: if a1 is the only non-zero element then
11: return a1
12: end if

Swap Step:
13: if There is some ai ̸= 0 left other than a1 then
14: Swap a1 ↔ ai
15: Go to Reduction Step
16: end if

In the above algorithm, initially at 0th iteration the numbers were (a1, . . . , an). After one iteration of
the reduction step the numbers will be replaced by (a1, a

′
2, . . . , a

′
n) where |ai| < |a1|

2 for all i ≥ 2 and
gcd(a1, a

′
2, . . . , a

′
n) = gcd(a1, . . . , an). In the swap step a1 is replaced by some a′i whose absolute value

is at most half of the absolute value of a1 and perform reduction step with respect to that a′i in next
iteration. In general we maintain two conditions in the algorithm:
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1. If after ith iteraion we have numbers (a(i)1 , . . . , a
(i)
m ) and after (i+ 1)th iteraion we have numbers

(a
(i+1)
1 , . . . , a

(i+1)
s ) for s ≤ m, then,

gcd(a
(i)
1 , . . . , a

(i)
m ) = gcd(a

(i+1)
1 , . . . , a

(i+1)
s )

2. And, |a(i+1)
1 | < |a

(i)
1 |
2

.

So, the algorithm correctly answers the gcd in O(poly(maxi log |ai|), n)) time.

Now we shall describe the algorithm of finding basis of a lattice from a given generating set, as a gen-
eralization of Euclid’s GCD algorithm. The current presentation is taken from [BGPS23]. The same
principle applies, where we keep updating each a⃗i by adding some integer multiplies of a⃗j where j ̸= i,
i.e., a⃗i → a⃗i +

∑
j ̸=i

xi,j a⃗j to make the length of a⃗i “shorter”.

Example 2.1.3. Consider finding a basis for the lattice generated by

a⃗1 =

280
0

 , a⃗2 =

 34
−42
0

 , a⃗3 =

−5090
0

 , a⃗4 =

 24
108
12

 , a⃗5 =

−920
0

 , (2.1.6)

a⃗6 =

62−2
8

 , a⃗7 =

−448
0

 , a⃗8 =

 81
−25
1

 , a⃗9 =

−13−87
−3

 . (2.1.7)

Using the update rule

a⃗2 → a⃗2 − a⃗1 (2.1.8)
a⃗3 → a⃗3 + 2a⃗2 + a⃗1 (2.1.9)
a⃗4 → a⃗4 + 3a⃗2 − a⃗1 (2.1.10)
a⃗5 → a⃗5 + 3a⃗1 (2.1.11)
a⃗6 → a⃗6 − 8a⃗8 − 33a⃗3 − 32a⃗5 (2.1.12)
a⃗7 → a⃗7 − 8a⃗3 − a⃗1 + 6a⃗5 (2.1.13)
a⃗8 → a⃗8 + 4a⃗3 + 5a⃗5 (2.1.14)
a⃗9 → a⃗9 + 2a⃗2, (2.1.15)

we now only have to find a basis for the lattice generated by280
0

 ,

 6
−42
0

 ,

−106
0

 ,

 14
−18
12

 ,

−80
0

 ,

00
0

 ,

00
0

 ,

 1
−1
1

 ,

 1
−3
−3

 . (2.1.16)

In the example above, the coefficients xi,j of a⃗i are determined by “trial and error” during the lecture.
We now provide a more systematic way to do this, which is similar to how the coefficient µi,j is obtained
in Line 3 of GSO. The main difference being that we pick the coefficient to be the nearest integer to µi,j ,
since µi,j may not be an integer in general. This gives us the LLL algorithm:
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Algorithm 3 LLL algorithm [LLL82]

Input: a⃗1, ..., a⃗N ∈ Zd (Generating set of a lattice.)
Output: Basis of L(⃗a1, ..., a⃗N )

Reduction Step:
1: Compute a⃗∗1, ..., a⃗

∗
N = GSO(⃗a1, ..., a⃗N )

2: for i = 2 to N do
3: for j = i− 1 to 1 do
4: if a⃗∗j ̸= 0 then

5: µi,j :=
⟨⃗ai, a⃗∗j ⟩
⟨⃗a∗j , a⃗∗j ⟩

6: m← nearest integer to µi,j

7: a⃗i ← a⃗i −ma⃗j
8: end if
9: end for

10: end for
11: Remove all zero vectors and update N

Swap Step:
12: if there exists i such that a⃗∗i = 0 then
13: Swap the order of a⃗i and a⃗k where k < i is the smallest index satisfying a⃗i ∈ span(⃗a1, ..., a⃗k).
14: Go to Reduction Step
15: end if
16: Return a⃗1, ..., a⃗N

Remark 2.1.4. Note that L(⃗a1, ..., a⃗N ) remains unchanged throughout the algorithm since the operations on the
vectors involved only swapping, adding an integer multiple of another basis vector a⃗i ← a⃗i −ma⃗j , and removal
of zero vectors.

Remark 2.1.5. We expect the length of each a⃗i to go down after each reduction step since we are subtracting from
a⃗i the components that are “orthogonal”.

Remark 2.1.6. The algorithm terminates when there is no i so that a⃗∗i = 0. a⃗∗i = 0 if and only if a⃗i is in span of
a⃗1, . . . , a⃗i−1. So, we stop when we get a linearly independent set of vectors for the lattice.

We now show that the LLL algorithm terminates in time poly(n), where n is the rank of L(⃗a1, ..., a⃗N ).
Note that for each iteration of LLL, the reduction step takes polynomial time and the swap step takes
O(1) times, and so it is sufficient to show that we have to repeat the two steps only a polynomial number
of times.

Theorem 2.1.7. Let a⃗1, ..., a⃗N be an input of Algorithm 3, and let L(⃗a1, ..., a⃗N ) be the lattice generated as defined
in (2.0.1) with n = rank(L). Then the reduction step and swap step are run only poly(n) times.

Proof. We first define a potential function at iteration t ≥ 1 as follows:

Pt = Pt(⃗a1, ..., a⃗N ) =
∏

i:⃗a∗i ̸=0

∥a⃗∗i ∥, (2.1.17)

where a⃗1, ..., a⃗N are the vectors at the start of iteration t and a⃗∗1, ..., a⃗
∗
N = GSO(⃗a1, ..., a⃗N ).
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Note that the initial value of P is upper bounded by

P1(⃗a1, ..., a⃗N ) =
∏

i:⃗a∗i ̸=0

∥a⃗∗i ∥ ≤
∏

i:⃗a∗i ̸=0

∥a⃗i∥ ≤ (max
i
∥a⃗i∥)n, (2.1.18)

where the inequalities follow from ∥a⃗∗i ∥ ≤ ∥a⃗i∥ and n = rank(L). Note that the vectors a⃗1, ..., a⃗N here are
the input of Algorithm 3, i.e., the vectors at the start of the first iteration. We also have

Pfinal(⃗a1, ..., a⃗N ) = Pfinal(basis of L) = det(L) ≥ 1, (2.1.19)

where the equality follows from (1.5.3) and the inequality follows from the assumption that the lattice
vectors are integer-valued.
We now show that the value of P goes down by at least a factor of 2 every time swap step is run,
which implies that the algorithm will terminate after at most n log(maxi ∥a⃗i∥) iterations. Suppose we
swap the order of a⃗i and a⃗k for some k < i. By Lines 11–13, we have a⃗i ̸= 0, a⃗∗i = 0, a⃗∗k ̸= 0 and
a⃗i ∈ span(⃗a1, ..., a⃗k) = span(⃗a∗1, ..., a⃗

∗
k). Furthermore, we can write

a⃗i =

k∑
j=1

xj a⃗j (2.1.20)

for some xk ̸= 0 since k is the smallest such index. By argument similar to (1.7.2), we have

πk (⃗ai) := πa⃗∗k a⃗i =
⟨⃗ai, a⃗∗k⟩
⟨⃗a∗k, a⃗∗k⟩

a⃗∗k = xka⃗
∗
k, (2.1.21)

where

xk =
⟨⃗ai, a⃗∗k⟩
⟨⃗a∗k, a⃗∗k⟩

=
⟨⃗aold

i , a⃗∗k⟩
⟨⃗a∗k, a⃗∗k⟩

−m
⟨⃗ak, a⃗∗k⟩
⟨⃗a∗k, a⃗∗k⟩

=
⟨⃗aold

i , a⃗∗k⟩
⟨⃗a∗k, a⃗∗k⟩

−m ∈
ï
−1

2
,
1

2

ò
. (2.1.22)

Here, a⃗old
i is the a⃗i before the update on Line 7 with respect to a⃗∗k, and m is the nearest integer to ⟨a⃗old

i ,⃗a∗k⟩
⟨a⃗∗k ,⃗a

∗
k⟩

.
It follows that

∥πk (⃗ai)∥ ≤
1

2
∥a⃗∗k∥. (2.1.23)

After the swap of a⃗i and a⃗k, in the next iteration, we have a⃗∗j remains the same for j ̸= k and ∥a⃗∗k∥ ≤
1
2∥a⃗

old,∗
k ∥, and so P goes down by at least a factor of 2 as claimed.

2.2 LLL as Basis Reduction

Often, we would have a set of vectors, and we would be interested in understanding the lattice generated
by that set. In the last lecture we saw the LLL algorithm, which can be used to find a basis for the lattice
generated by an arbitrary set of vectors over rationals. An important problem in the field of lattices is the
shortest vector problem (SVP). Given a lattice, it asks to find the shortest non-zero vector in that lattice. We
have already seen some nice properties of such vectors in the second lecture (Minkowski’s theorems.)
Today we will see that the LLL algorithm can in fact be used to solve an approximate version of this
problem. In fact, the LLL algorithm can be seen as an example of basis reduction, where we are given a
lattice basis, and the goal is to find better basis vectors for that lattice. Qualitativey, a basis is better if its
vectors are short and orthogonal. We begin by looking at the SVP in just two dimensions.
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2.2.1 SVP in 2 Dimensions

Suppose we are given two vectors b⃗1, b⃗2, such that
∥∥∥⃗b2∥∥∥ >

∥∥∥⃗b1∥∥∥, as in the figure below. What operations
can we perform on them to make them as orthogonal as possible, while preserving the lattice generated?

b⃗1 = (3, 0)

b⃗2 = (10, 4)

b⃗′2 = (1, 4) 3b⃗1

We can subtract ⌊µ2,1⌉⃗b1 from b⃗2 to obtain b⃗′2. Clearly, this does not change the lattice generated by the
two vectors. What this achieves is that the coefficients of a particular basis vector, written in the GSO
basis, become shorter. Thus, the inner products reduce, and vectors become more orthogonal.
We can now swap our vectors (if b⃗′2 is now shorter than b⃗1), and continue doing this. This idea can clearly
be used to construct an algorithm for SVP in 2 dimensions. For simplicity, we present this for vectors
over the integer field. Without loss of generality, we assume that

∥∥∥⃗b2∥∥∥ ≥ ∥∥∥⃗b1∥∥∥.

Algorithm 4 SVP in 2D

Input:
¶⃗
b1, b⃗2

©
⊂ Z2

Output: Shortest non-zero vector in L(⃗b1, b⃗2)

1: b⃗2 ← b⃗2 − ⌊µ2,1⌉⃗b1 ▷ µ2,1 =
⟨⃗b2, b⃗1⟩
⟨⃗b1, b⃗1⟩

2: if 0.9 · ∥⃗b1∥ > ∥⃗b2∥ then
3: Swap(⃗b1, b⃗2)
4: Go To Step 1
5: end if
6: Return the shorter of b⃗1, b⃗2

Lemma 2.2.1. Algorithm 4 terminates after O(log
∥∥∥⃗b2∥∥∥) steps.

Proof. Each Swap step will decrease the length of one of the vectors by at least a factor of 0.9. Therefore,
the total number of Swap steps will be at most 2 · log1/0.9(max(∥⃗b1∥, ∥⃗b2∥)).

Lemma 2.2.2. Algorithm 4 outputs the shortest vector.

Proof. Let v⃗ be a shortest non-zero vector in L, and b⃗1, b⃗2 be the final basis vectors returned by the al-
gorithm. Suppose ∥v⃗∥ < min(∥⃗b1∥, ∥⃗b2∥). Since b⃗1, b⃗2 form a basis, we can write v⃗ = α⃗b1 + βb⃗2 where
α, β ∈ Z. It is easy to see that α, β ̸= 0, because if any of the coefficients is zero, v⃗ is an integer multiple
of a basis vector which contradicts the assumption that v⃗ is the shortest vector.
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We claim that |β| = 1. To prove the claim, suppose that |β| ≥ 2. Observe that the basis returned from the
algorithm has the property

∥⃗b2∥ ≥ 0.9 · ∥⃗b1∥

Squaring on both sides,

∥⃗b2∥2 = ∥⃗b∗2 + µ2,1⃗b1∥2 = ∥⃗b∗2∥2 + µ2
2,1∥⃗b1∥2 ≥ 0.81 · ∥⃗b1∥2

Due to rounding in line 1 of algorithm 4 and a similar analysis like (2.1.22), |µ2,1| ≤ 0.5, therefore

∥⃗b∗2∥2 ≥ (0.81− 0.25) · ∥⃗b1∥2

= 0.56∥⃗b1∥2

> 0.56∥v⃗∥2

The last inequality follows from our assumption that v⃗ is shorter than the returned vector. Since |β| ≥ 2

and b⃗∗2, b⃗1 are orthogonal,

v⃗ = α⃗b1 + βb⃗2 = α⃗b1 + β(⃗b∗2 + µ2,1⃗b1)

=⇒ ∥v∥ ≥ β∥⃗b∗2∥ ≥ 2∥⃗b∗2∥ > 2
√
0.56∥v⃗∥ ≥ ∥v⃗∥,

which is a contradiction. Therefore |β| = 1. Without loss of generality, we assume β = 1. Therefore,

v⃗ = (α+ µ2,1)⃗b1 + b⃗∗2

Since α ̸= 0, so |α| ≥ 1. WLOG we assume α ≥ 1. Let u⃗ = v⃗ − b⃗1. Clearly u⃗ ∈ L(⃗b1, b⃗2). Then,

∥u∥2 = (α+ µ2,1 − 1)2||⃗b1||2 + ||⃗b∗2||2 < (α+ µ2,1)
2||⃗b1||2 + ||⃗b∗2||2 = ∥v⃗∥2

Therefore u⃗ is a shorter vector than v⃗, which contradicts the assumption that v⃗ is the shortest vector. So
∥v⃗∥ ≥ min(∥⃗b1∥, ∥⃗b2∥) and one of the returned basis must be the shortest vector in lattice.

2.2.2 LLL Reduced Basis

LLL (Lenstra–Lenstra–Lovász) is one of the most important algorithms for basis reduction. It aims to
reduce the size of the basis and can be used to find decently short vectors in the lattice in polynomial
time.

Definition 2.2.3 (δ-LLL Reduced Basis). A basis B = (⃗b1, . . . , b⃗n) where b⃗i ∈ Zd is a δ-LLL reduced basis if
the following holds

1. Coefficient reduced. ∀i ∈ [n],∀j : 1 ≤ j < i, |µi,j | ≤
1

2

2. Lovász condition. ∀i ∈ [n], δ
∥∥∥⃗b∗i ∥∥∥ ≤ ∥µi+1,i⃗b

∗
i + b⃗∗i+1∥

where µi,j =
⟨⃗bi, b⃗∗j ⟩
⟨⃗b∗j , b⃗∗j ⟩

and 0.25 < δ2 ≤ 1
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Remark 2.2.4. The Lovász condition is equivalently stated asÅ
δ2 − 1

4

ã∥∥∥⃗b∗i ∥∥∥2 ≤ ∥∥∥⃗b∗i+1

∥∥∥2 (2.2.1)

Proof. Condition 2 is equivalent to

δ2∥⃗b∗i ∥2 ≤ µ2
i+1,i∥⃗b∗i ∥2 + ∥⃗b∗i+1∥2

Since |µi+1,i| ≤ 1
2 , we get

δ2∥⃗b∗i ∥2 ≤
1

4
∥⃗b∗i ∥2 + ∥⃗b∗i+1∥2

=⇒
Å
δ2 − 1

4

ã∥∥∥⃗b∗i ∥∥∥2 ≤ ∥∥∥⃗b∗i+1

∥∥∥2

Remark 2.2.5. Suppose δ2 = 3
4 . Then,

∥∥∥⃗b∗i ∥∥∥2 ≤ 2
∥∥∥⃗b∗i+1

∥∥∥2.

Lemma 2.2.6. For a δ-LLL reduced basis B = (⃗b1, . . . , b⃗n) for lattice L,

∥⃗b1∥ ≤
Ç…

1

δ2 − 0.25

ån−1

λ1(L) (2.2.2)

Proof. From eq. (2.2.1), we get that

(δ2 − 0.25)∥⃗b∗i ∥2 ≤ ∥⃗b∗i+1∥2

∥⃗b∗i ∥ ≤
Ç…

1

δ2 − 0.25

å
∥⃗b∗i+1∥

Chaining these inequalities over i ∈ [n] we get that

∥⃗b1∥ = ∥⃗b∗1∥ ≤
Ç…

1

δ2 − 0.25

å
∥⃗b∗2∥

≤
Ç…

1

δ2 − 0.25

å2

∥⃗b∗3∥

...

≤
Ç…

1

δ2 − 0.25

ån−1

∥⃗b∗n∥

We know that λ1(L) ≥ mini ∥⃗b∗i ∥. Minimizing over all i, we achieve the desired result.

Remark 2.2.7. For a
»

3
4 -reduced LLL basis, ∥⃗b1∥ ≤ (

√
2)n−1λ1(L). That is, b⃗1 is a (

√
2)n−1 approximation to

the shortest non-zero vector.

Remark 2.2.8. The condition that 0.25 < δ2 ensures that the approximation factor is always well-defined. A
higher factor will lead to a better approximation, however, polynomial runtime is only guaranteed when δ2 < 1.

2.2.3 Algorithm
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Algorithm 5 LLL

Input: Lattice basis B = (⃗b1, . . . , b⃗n)
Output: δ−LLL reduced basis for L(B)

1: Perform Gram-Schmidt orthogonalization on B to get (⃗b∗1, . . . , b⃗
∗
n)

/* Reduction Step */
2: for i = 1 to n do
3: for j = i− 1 to 1 do

4: b⃗i ← b⃗i − ⌊µi,j ⌉⃗bj ▷ µi,j =
⟨⃗bi, b⃗∗j ⟩
⟨⃗b∗j , b⃗∗j ⟩

5: end for
6: end for
/* Swap Step */

7: if ∃i such that δ∥⃗b∗i ∥ > ∥µi+1,i⃗b
∗
i + b⃗∗i+1∥ then

8: Swap(⃗bi, b⃗i+1)
9: Go To Step 1

10: end if
11: Return B

2.2.4 Correctness

Lemma 2.2.9. If the algorithm terminates, LLL produce a δ-LLL reduced basis for L(B)

Proof. To obtain a δ-LLL reduced basis, check if the returned basis satisfy the conditions in defini-
tion 2.2.3.

• Condition 1 is satisfied because of the reduction step.

First notice that reducing b⃗i ← b⃗i − ⌊µi,j ⌉⃗bj for j < i does not change b⃗∗i . This is because b⃗∗i =

b⃗i −
∑

j<i µi,j b⃗
∗
j and we can represent b⃗j as b⃗j =

∑
k≤j ck b⃗

∗
k for some ck. The change to b⃗i will be

reflected in µi,j . More precisely, µi,j will decrease by ⌊µi,j⌉cj . Therefore, summing them up will
nullify the changes and give back the original b⃗∗i . Note that the condition that j < i is important to
have this property

Next, since b⃗j = b⃗∗j +
∑

k<j µj,k b⃗
∗
k, after the reduction the coefficient of b⃗∗j in b⃗i will be less than 1

2
due to rounding, and doing the reduction from j = n − 1 to 1 ensures that further reduction will
not affect the property achieved by previous reduction. Therefore condition 1 is satisfied

• Condition 2 is satisfied due to the swap steps. If the algorithm terminates, for all i, we will have
δ∥⃗b∗i ∥ ≤ ∥µi+1,i⃗b

∗
i + b⃗∗i+1∥

Now we will show that the LLL algorithm runs in polynomial time if 0.25 < δ2 < 1.

Definition 2.2.10. For a basis B :=
¶⃗
b1, . . . b⃗n

©
, define a potential ∆ as,

∆ := ∥⃗b∗1∥n · ∥⃗b∗2∥n−1 · . . . · ∥⃗b∗n∥ =
∏
i≤n

∥⃗b∗i ∥n−i (2.2.3)
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Since (⃗b∗1, . . . , b⃗
∗
n) is orthogonal basis and Gram-Schmidt orthogonalization does not change the determi-

nant, ∥⃗b∗1∥ · ∥⃗b∗2∥ · . . . · ∥⃗b∗n∥ = det(L(⃗b∗1, . . . , b⃗∗n)) = det(L(⃗b1, . . . , b⃗n)).Thus ∆ can be rewriten as

∆ = det(L(⃗b1, . . . , b⃗n)) · det(L(⃗b1, . . . , b⃗n−1)) · . . . · det(L(⃗b1)) (2.2.4)

Lemma 2.2.11. LLL can have at most O(n2 log(max ∥⃗bi∥)) swap steps

Proof. Notice that for every swap step on i, all factors of ∆ in eq. (2.2.4) stay the same except for one,
which changes as:

det(L(⃗b1, . . . , b⃗i−1, b⃗i))→ det(L(⃗b1, . . . , b⃗i−1, b⃗i+1))

Also a swap occurs when δ∥⃗b∗i ∥ > ∥µi+1,i⃗b
∗
i + b⃗∗i+1∥which implies that

δ2∥⃗b∗i ∥2 > µ2
i+1,i∥⃗b∗i ∥2 + ∥⃗b∗i+1∥2 ≥ ∥⃗b∗i+1∥2

=⇒ δ∥⃗b∗i ∥ > ∥⃗b∗i+1∥

So b⃗∗i+1 is a factor δ smaller than b⃗∗i , which means

det(L(⃗b1, . . . , b⃗i−1, b⃗i+1)) < δ det(L(⃗b1, . . . , b⃗i−1, b⃗i))

Hence after a swap step, the potential ∆ will decrease at least by a factor of δ. This implies there will
only be O(log1/δ ∆) number of swaps. Since ∥⃗bi∥ ≥ ∥⃗b∗i ∥, we can write the expression to,

O(log1/δ ∆) = O(log1/δ(max ∥⃗bi∥1+···+n)) = O(n2 log(max ∥⃗bi∥))

We still have one more thing to take care of. To prove that LLL runs in polynomial time, we must also
make sure that the bit representation of vectors b⃗∗i and b⃗i at any stage do not grow exponentially during
the reduction process. We first analyse b⃗∗i :

Lemma 2.2.12. ∀i ∈ [n], we have ∆2 · b⃗∗i ∈ Zd and
1

∆2
≤ ∥⃗b∗i ∥ ≤ ∆2

Remark 2.2.13. If this lemma is true, then b⃗∗i can be represented with O(log∆) bits

Proof. First, let’s prove ∆2 · b⃗∗i ∈ Zd. We start by writing each basis vector in the GSO basis:

b⃗i = b⃗∗i +
∑
j<i

µi,j b⃗
∗
j

Let’s say that
b⃗∗i = b⃗i + a1⃗b1 + · · ·+ ai−1⃗bi−1 (2.2.5)

where a1, . . . , ai−1 ∈ R. Since b∗i is orthogonal to bj for all j < i, taking inner products of b∗i with bj gives
i− 1 linear equations where the unknowns are aj :

0 = ⟨b∗i , b1⟩ = ⟨⃗bi, b⃗1⟩+ a1⟨⃗b1, b⃗1⟩+ · · ·+ ai−1⟨⃗bi−1, b⃗1⟩

0 = ⟨b∗i , b2⟩ = ⟨⃗bi, b⃗2⟩+ a1⟨⃗b1, b⃗2⟩+ · · ·+ ai−1⟨⃗bi−1, b⃗2⟩
...

0 = ⟨b∗i , bj⟩ = ⟨⃗bi, b⃗j⟩+ a1⟨⃗b1, b⃗j⟩+ · · ·+ ai−1⟨⃗bi−1, b⃗j⟩
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Notice that the coefficients of the equations are all integers. We can solve the system of linear equations
using Cramer’s rule. The value of each variable aj will be

aj =
xj∣∣∣∣∣∣∣∣∣

⟨⃗b1, b⃗1⟩ . . . ⟨⃗bi−1⃗b1⟩
⟨⃗b1, b⃗2⟩ . . . ⟨⃗bi−1⃗b2⟩

...
. . .

...
⟨⃗b1, b⃗i−1⟩ . . . ⟨⃗bi−1⃗bi−1⟩

∣∣∣∣∣∣∣∣∣

=
xj

det(L(⃗b1, . . . , b⃗i−1))2
(2.2.6)

for some xj ∈ Z. Notice that if we multiply eq. (2.2.5) by the denominator of eq. (2.2.6), we get an integer
vector. Then, by definition of ∆, we get:

det(L(⃗b1, . . . , b⃗i−1))
2 · b⃗∗i ∈ Zd =⇒ ∆2 · b⃗∗i ∈ Zd

This completes the proof of the first part. For the second part, since det(L(⃗b1, . . . , b⃗i−1))
2 · b⃗∗i ∈ Zd, and it

is a non-zero vector, the ℓ2 norm must be at least 1. This gives us one side of the required inequality:

det(L(⃗b1, . . . , b⃗i−1))
2 · ∥⃗b∗i ∥ ≥ 1 =⇒ ∥⃗b∗i ∥ ≥

1

det(L(⃗b1, . . . , b⃗i−1))2
≥ 1

∆2

For the other side,

∥⃗b∗i ∥ ·
∏
j<i

∥⃗b∗j∥ = det(L(⃗b1, . . . , b⃗i))

=⇒ ∥⃗b∗i ∥ =
det(L(⃗b1, . . . , b⃗i))∏

j<i ∥⃗b∗j∥

≤ det(L(⃗b1, . . . , b⃗i))
∏
j<i

det(L(⃗b1, . . . , b⃗j))2

≤ ∆2

Remark 2.2.14. Notice that this is a rather loose bound. However, we just want to prove that we can represent
the GSO vectors with polynomial (in n) numbers of bits.

Now let’s look at b⃗i.

Lemma 2.2.15. After the reduction step, ∥⃗bi∥ ≤ n∆2

Proof. With
b⃗i = b⃗∗i +

∑
j<i

µi,j b⃗
∗
j

After the reduction step,

∥⃗bi∥ ≤ ∥⃗b∗i ∥+
∑
j<i

1

2
∥⃗b∗j∥ ≤ n∆2

where the last inequality is due to lemma 2.2.12

Lemma 2.2.16. During the reduction step, ∥⃗bi∥ ≤ n∆2(2n∆4)n−1
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Proof. While reducing the i vector, b⃗i ← b⃗i − ⌊µi,j ⌉⃗bj

∥⃗bi − ⌊µi,j ⌉⃗bj∥ ≤ ∥⃗bi∥+ |⌊µi,j⌉|⃗bj

≤ ∥⃗bi∥+

(
1 +

∣∣∣∣∣ ⟨⃗bi, b⃗∗j ⟩⟨⃗b∗j , b⃗∗j ⟩

∣∣∣∣∣
)
∥⃗bj∥

≤ ∥⃗bi∥+

(
1 +
∥⃗bi∥∥⃗b∗j∥
∥⃗b∗j∥2

)
∥⃗bj∥

= ∥⃗bi∥+ ∥⃗bj∥+
∥⃗bi∥∥⃗bj∥
∥⃗b∗j∥

Now use lemma 2.2.12 and lemma 2.2.15,

∥⃗bi − ⌊µi,j ⌉⃗bj∥ ≤ ∥⃗bi∥(1 + n∆4) + n∆2 ≤ 2n∆4∥⃗bi∥

Since at most n− 1 steps is performed, the final b⃗i is at most

(2n∆4)n−1∥⃗bi∥ ≤ n∆2(2n∆4)n−1

Corollary 2.2.17. LLL terminates in polynomial time.

Proof. From lemma 2.2.12, lemma 2.2.15, lemma 2.2.16, all the vectors in the algorithm can be represented
in O(n log∆) bits. From lemma 2.2.11, it is clear that the algorithm runs in polynomial time

Remark 2.2.18. In practice, the swapping of vectors can be done for all vectors i that don’t satisfy condition 2
before jumping back to the first step. There are also many possible optimizations to reduce the runtime dependence
on the bit size of the vector. This will increase the overall runtime of the algorithm. The current known fastest
implementation of LLL is from [RH23], which has a heuristic running time of O(nω(log ∥B∥max + n)1+ϵ), where
ω ∈ (2, 3] and B is the basis. To play around with LLL, you may use [dt23].

2.3 Application of LLL: Cryptanalysis of Subset Sum based Cryptosystems

The LLL algorithm is probably the most important lattice algorithm. Today we will see how it can be
used for cryptanalysis of a certain subset sum based cryptosystem.

2.3.1 Public-Key Encryption

Suppose two parties (say our old friends Alice and Bob) want to communicate securely. A public key en-
cryption scheme is a protocol that allows for this. Alice publishes a public key, which Bob can use to encrypt
the message she wishes to send to Alice. Alice retains a private key, that allows her to decrypt the message
that Bob sent. Any eavesdropper who does not know the secret key can’t decrypt the messages. The pro-
tocol itself consists of a key generation mechanism, and reliable encryption and decryption mechanisms.
It is defined as follows.

Definition 2.3.1 (Public-Key Encryption Scheme). A public-key encryption scheme consists of three polyno-
mial time algorithms (Gen,Enc,Dec):

22



• Gen(1λ)→ (pk, sk): A probabilistic key generation algorithm that takes a security parameter λ and outputs
a public key pk and a secret key sk.

• Enc(pk,m) → c: A probabilistic encryption algorithm that takes the public key pk and a message m, and
outputs a ciphertext c.

• Dec(sk, c)→ m or ⊥: A deterministic decryption algorithm that takes the secret key sk and a ciphertext c,
and outputs either a message m or an error symbol ⊥.

The scheme must satisfy the correctness property: for all messages m in the message space,

Pr[Dec(sk,Enc(pk,m)) = m] = 1− negl(λ)

where (pk, sk)← Gen(1λ) and negl(λ) is a negligible function in λ.

We will need to define a trapdoor one way function, which is a function that is hard to invert in general,
except if you have a secret trapdoor, which can be used to invert the function in polynomial time. Given
such a function, it should be clear that the trapdoor can act as a secret key that can allow one to decrypt
messages that are encrypted using such functions.

Definition 2.3.2 (Trapdoor One-Way Function). A trapdoor one-way function is a tuple of three polynomial-
time algorithms (G,F, F−1):

• G(1λ)→ (ek, td): A probabilistic algorithm that generates an evaluation key ek and a trapdoor td.

• F (ek, x) → y: A deterministic algorithm that evaluates the function on input x using the evaluation key
ek to produce output y.

• F−1(td, y)→ x: A deterministic algorithm that inverts y to recover x using the trapdoor td.

The function must satisfy:

1. One-wayness: For any probabilistic polynomial-time adversary A,

Pr[F (ek,A(ek, F (ek, x))) = F (ek, x)] ≤ negl(λ)

where (ek, td)← G(1λ), x is chosen uniformly from the domain, and negl(λ) is a negligible function in λ.

2. Trapdoor property: For all x in the domain,

Pr[F−1(td, F (ek, x)) = x] = 1− negl(λ)

where (ek, td)← G(1λ).

2.3.2 Subset-Sum

Definition 2.3.3 (Subset-Sum Problem). Given a set of non-negative real numbers A = {a1, . . . , an} and a
target sum S, the Subset-Sum Problem asks whether there exists a vector x ∈ {0, 1}n such that:

n∑
i=1

xi · ai = S

More formally:
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• Input: A vector a⃗ = (a1, . . . , an) ∈ Z≥0 and a target S ∈ Z.

• Question: Does there exist a vector x⃗ = (x1, . . . , xn) ∈ {0, 1}n such that a⃗ · x⃗ = t?

The search version of the problem asks to find such a subset (or equivalently, the vector x⃗) if it exists.

Remark 2.3.4. The Subset-Sum Problem is known to be NP-complete [Goo22], which means it is believed to be
computationally hard in the worst case.

Example 2.3.5 (Easy Instance of Subset-Sum Problem). An easy instance of the Subset-Sum Problem occurs
when the sequence {a1, . . . , an} is superincreasing, i.e., when:

ai >

i−1∑
j=1

aj for all i = 2, . . . , n

For example, the sequence (1, 3, 7, 15, 31) is superincreasing because:

• 3 > 1

• 7 > 1 + 3 = 4

• 15 > 1 + 3 + 7 = 11

• 31 > 1 + 3 + 7 + 15 = 26

For such instances, the subset-sum problem can be solved efficiently using a greedy algorithm:

1. Start with the largest element an (binary search).

2. If an ≤ t, include it in the subset and subtract it from t.

3. Continue with an−1, an−2, . . . until either t = 0 (solution found) or all elements have been considered.

This property is crucial in certain subset-sum based cryptosystems, where the ease of solving superin-
creasing instances is used as a trapdoor. Note that the superincreasing property is easy to hide from a
sequence using modular arithmetic. One simply samples a large prime number P and a random integer
M ∈ Z∗

P , and computes a new sequence a⃗′ = M · a⃗ mod P . This sequence can then be published as the
public key. If a sender wants to send a message x⃗ ∈ {0, 1}n, she computes the sum S :=

∑
j a

′
jxj , and

send it to the receiver. For an evesdropper who does not know P,M , this is an instance of the subset
sum problem, where the sequence is not superincreasing. But the receiver who knows P,M can easily
invert the initial map, and recover an instance of subset sum over the initial superincreasing sequence.
Let’s see what such a function formally looks like.

2.3.3 A Cryptosystem Based on Subset Sum

We construct a trapdoor One-Way Function Based on Subset-Sum. Let a⃗ = (a1, . . . , an) be a superin-
creasing sequence as defined in the previous example and ai ∈ [2n]. We construct a trapdoor one-way
function as follows:

1. Key Generation G(1λ):

• Sample a large prime P with |P | = O(2n
2
).
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• Sample M
random←−−−−− Z∗

P .

• Compute a⃗′ = M · a⃗ mod P = (Ma1 mod P, . . . ,Man mod P ).

• Output evaluation key ek = a⃗′ and trapdoor td = (M,P ).

2. Function Evaluation F (ek, x⃗):

• Input: x⃗ ∈ {0, 1}n.

• Output: c = ⟨x⃗, a⃗′⟩ =
∑n

i=1 xia
′
i.

3. Inversion F−1(td, c):

• Compute S = c ·M−1 mod P .

• Note that S = ⟨x⃗, a⃗⟩ mod P = ⟨x⃗, a⃗⟩, since P is much larger than any subset-sum of a⃗.

• Recover x⃗ by solving the easy instance of the subset-sum problem with target sum S and set
a⃗.

The security of this construction relies on the hardness assumption of the worst case subset-sum prob-
lem. Without knowledge of M and the easy instance a⃗, finding x⃗ (decryption) given a⃗′ and c would be
computationally difficult. The security of the trapdoor one way function described above relies of the
fact that a random instance of the subset sum problem with large coefficients (as produced by the key
generation algorithm above) would be a hard instance. Interestingly, this is not the case, (no) thanks to
the LLL algorithm. It turns out that the 2n/2-approximation (to the shortest vector) guarantee we saw in
the last lecture is enough to solve such sparse instances.

2.3.4 Breaking the Subset-Sum Based Trapdoor One-Way Function Using LLL

We now demonstrate how the Lenstra-Lenstra-Lovász (LLL) algorithm can be used to break the subset-
sum based trapdoor one-way function described earlier. This attack showcases the power of lattice
reduction techniques in cryptanalysis. The idea is to come up with a lattice (using the given set and the
target), such that a 2n/2-approximate shortest vector is the solution to the sparse subset sum instance
with high probability.

Problem Statement. LetM := 24n
2
. Given a⃗ ∈ Zn, such that each entry ai is sampled independently,

uniformly at random from U :=
{
1
2M, 12(M+ 1), . . . ,M

}
, and a target S computed as S := ⟨⃗a, x⃗⟩,

recover x⃗.
Note that finding x⃗ amounts to recovering the message.

Remark 2.3.6. Even though the analysis below relies on the instance (the set a⃗) being chosen randomly, in practice
the LLL has seen a lot more success breaking subset sum based cryptosystems.

Consider the lattice generated by the following basis.

B =

â
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
2n · S −2n · a1 −2n · a2 · · · −2n · an

ì
(2.3.1)
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The lattice L(B) contains the vector b⃗0 +
∑n

i=1 xi⃗bi = (x⃗, 0)T (by construction). Because x⃗ is a binary
vector,

∥∥(x⃗, 0)T∥∥
2
= ∥x⃗∥2 ≤

√
n. We can use the LLL algorithm to find a lattice vector of length at most

∥x⃗∥2 · 2n/2 ≪ 2n. We now show that any such short vector recovered by the LLL algorithm is a multiple
of (x⃗, 0)T .

Lemma 2.3.7. With high probability, the only vectors z⃗ ∈ L(B) with ∥z⃗∥ < 2n are multiples of (x⃗, 0)T .

Proof. Let z⃗ ∈ L(B) such that ∥z⃗∥2 < 2n. Then there exist α, y1, y2, . . . yn ∈ Z such that z⃗ = α⃗b0+
∑n

i=1 yib⃗i.
Since |zn| = 2n · |(αS −

∑n
i=1 yiai)| < 2n, we get that

αS =

n∑
i=1

yiai (2.3.2)

Now, since x⃗ is a binary vector, αS ≥ 1
2Mα. Also, ∥z⃗∥2 < 2n =⇒ ∥y⃗∥∞ ≤ 2n =⇒

∑n
i=1 yiai ≤ nM2n.

Putting these two inequalities together with eq. (2.3.2) gives us α ≤ 2n2n.
Next, observe that the number of triplets (x⃗, y⃗, α), such that x⃗ ∈ {0, 1}n , ∥y⃗∥∞ ≤ 2n, |α| ≤ 2n2n is
bounded by 2n · 2n(n+1) · 2n2n ≤ 23n

2
. Let’s see what is the probability that eq. (2.3.2) is satisfied for a

fixed (x⃗, y⃗, α) such that y⃗ /∈ Zx⃗. That is, we want to upper bound

Pra⃗∼Un

[
αS =

n∑
i=1

yiai

]
(2.3.3)

By our assumption, ∃j ∈ [n] : yj ̸= αxj . Suppose we fix the values of a1, . . . aj−1, aj+1, . . . an, and pick
only aj randomly. Then the picked aj has to satisfy aj(yj−αxj) = α

∑
i ̸=j xiai−

∑
i ̸=j yiai. Clearly, there

is at most one choice of aj that satisfies this. Therefore, the probability in the above equation is bounded
by

Pra⃗∼Un

[
αS =

n∑
i=1

yiai

]
≤ (M/2 + 1)−1 ≤

Ä
24n

2−1
ä−1

. (2.3.4)

Applying union bound over all possible triplets (x⃗, y⃗, α) (a maximum of 23n
2

such triplets), for our choice
ofM, we get our desired result.
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Chapter 3

Closest Vector Problem

Lattice-based cryptography has emerged as a promising approach for constructing secure cryptosys-
tems. It allows constructions of cryptosystems based on average case hardness assumptions of key lattice
problems, such as the shortest vector problem. Notably, Regev [Reg05] established a reduction from
worst case lattice problems (GapSVP and SIVP) to the Learning With Errors (LWE) problems, and showed
that it is possible to build public key cryptosystems using this problem. This allowed cryptosystems
based on the hardness of polynomial-time approximations of the Shortest Vector Problem (SVP). We
first define some lattice problems, and give an overview of the hardness of lattice problems.

Definition 3.0.1 (Decision SVP). Given a lattice basis B and a distance d, output YES if the shortest non-zero
vector has length λ(L) ≤ d, and NO otherwise.

Definition 3.0.2 (GapSVPγ). Given a lattice basis B, a parameter γ and a distance d, output YES if the shortest
non-zero vector has length λ(L) ≤ d, and NO if the length is λ(L) > γd.

Definition 3.0.3 (γ-approximate SVP or SVPγ). Given a lattice basis B and an approximation factor γ, output
a vector v ∈ L such that ∥v∥ ≤ γλ(L).

Clearly, if SVPγ can be solved, GapSVPγ can be solved. SVPγ is interesting because we get surprising
results for almost all approximation factors:

1. 1 ≤ γ ≤ O(1) =⇒ SVPγ is NP-hard. Best known algorithm run in O(2n) time.

2. γ = O(
√
n) =⇒ SVPγ ∈ coNP.

3. If γ = O(n) is hard, we have constructions for one-way functions and collision-resistant hash
functions (minicrypt).

4. If γ = O(n3/2) is hard, we have constructions for public key cryptography (cryptomania).

5. γ > 2n log logn/ logn: Solvable in poly(n) time (e.g., using LLL algorithm).

There exist algorithms for SVPO(nk) (equivalently, GapSVPO(nk)) that run in time O(2n/k).

This chapter is based on lectures 5 and 6.
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Figure 3.1: SVP Approximation Landscape

The hardness of SVP for various approximation factors says something about all of Impagliazzo’s five
worlds [Imp95]1:

1. ALGORITHMICA: If SVPO(1) is easy in the worst case.

2. HEURISTICA: If SVPO(1) is easy on average (and P ̸= NP).

3. MINICRYPT: If SVPO(n) is hard.

4. CRYPTOMANIA: If SVPO(n1.5) is hard.

5. PESSILAND: If SVPO(
√
n) is hard, but SVPO(n) is easy (and P ̸= NP).

3.1 Closest Vector Problem (CVP)

Given a lattice and a target vector in Rn, this problem asks to find the lattice vector closest to the target.

Definition 3.1.1 (Search CVP). Given a lattice L(B) with basis B and a target vector t⃗ ∈ Rn, find v⃗ ∈ L(B)
that minimizes ∥v⃗ − t⃗∥2.

Definition 3.1.2 (Decision CVP). Given a lattice L(B) with basis B, a target vector t⃗ ∈ Rn, and a distance
parameter d > 0, output YES iff there exists a lattice vector v⃗ ∈ L(B) such that ∥v⃗ − t⃗∥2 ≤ d.

x

y

t⃗

v⃗

CVP: Find closest lattice point v⃗ to target t⃗

Figure 3.2: Illustration of the Closest Vector Problem (CVP)

CVP is at least as hard as SVP.
1This is probably the only such problem?
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Theorem 3.1.3. There exists a polynomial-time reduction from SVP to CVP.

Proof. The reduction works as follows. Given a latticeLwith basis B = (⃗b1, . . . , b⃗n). Repeat the following
steps for each basis vector b⃗i:

1. Construct a new lattice L′ with basis (⃗b1, b⃗2, . . . , 2⃗bi . . . , b⃗n) (L′ ⊆ L).

2. Use the CVP oracle on L′ with target vector b⃗i. Say the oracle returns a vector v⃗ = α1⃗b1 + α2⃗b2 +

. . .+ 2αi⃗bi + . . . αnb⃗n.

3. Compute v⃗′ = v⃗ − b⃗i. The coefficient of b⃗i in v⃗′ is always odd, and v⃗′ ̸= 0⃗ since b⃗i /∈ L′. Thus v⃗′ is
the shortest non-zero lattice vector among all of the vectors in Lwhose coefficient for b⃗i is odd.

Note that the shortest vector in L must have at least one odd coefficient (otherwise dividing the vector
by two generates a shorter non-zero lattice vector). Therefore it is in at least one of the sub-lattices
considered above, and it will be found in at least one of these n CVP oracle calls. Return the minimum
of the v⃗′s found.

This reduction shows that if we can solve CVP in polynomial time, we can also solve SVP in polynomial
time, proving that CVP is at least as hard as SVP.
The closest vector problem (CVP) is one of the hardest lattice problems, as most other lattice probelems
like SVP reduce to it. We will see two algorithms to solve this problem, first a simple 2O(n2) algorithm
(based on ideas from Assignment 1 problem 1), followed by a O(4n) time deterministic algorithm based
on Voronoi cells [MV13].

3.2 CVP in 2O(n
2)

We start with a simple example. Consider the following vectors

b⃗1 = b⃗∗1

b⃗2 = b⃗∗2 + 0.3⃗b∗1

b⃗3 = b⃗∗3 + 0.2⃗b∗2 + 0.1⃗b∗1

t⃗ = 2.8⃗b∗1 + 2.2⃗b∗2 + 6.3⃗b∗3

where each b⃗i is our basis vector for the lattice and b⃗∗i is the Gram-Schmidt vector obtained via Gram-
Schmidt Orthogonalization. A straightforward idea is to apply the same idea as in the LLL algorithm:
loop back from i = n to 1 and subtract an integer multiple of b⃗i, which we attain from rounding µi =
⟨⃗t,⃗b∗i ⟩
⟨⃗b∗i b⃗∗i ⟩

. In this example, we end up with t⃗ − 6⃗b3 − b⃗2 − 2⃗b1. Similar to the LLL algorithm, this vector has

the property that the coefficients of each b⃗∗i is within ±1
2 , giving us that

dist(⃗t, u⃗ := 6⃗b3 + b⃗2 + 2⃗b1)
2 ≤

∑
i

1

4
∥⃗b∗i ∥2 (3.2.1)

This with some modifications gives a polynomial time 2
n
2 approximation algorithm for the CVP problem,

known as Babai’s Nearest Plane algorithm [Bab86]. We would like to use eq. (3.2.1) to bound the size of
the coefficients of the closest vector to t⃗, written in the basis B. We can then enumerate over all possible
coefficients in that range, and return the minimum. We start with the following theorem.
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Theorem 3.2.1. Suppose we are given a 3
4 -LLL reduced basis B. Let v⃗ ∈ L be the closest lattice vector to t⃗ ∈ Rn

and the projection of t⃗− v⃗ in the direction of b⃗∗n is αb⃗∗n. Then |α| ≤ 2
n−2
2 .

Proof.
α2∥⃗b∗n∥2 ≤ dist(⃗t,L)2

≤
∑
i

1

4
∥⃗b∗i ∥2 (Observe that in eq. (3.2.1), u is such a vector)

≤
∑
i

1

4
2n−i∥⃗b∗n∥2 (since the basis is LLL reduced.)

≤ 1

4
2n∥⃗b∗n∥2

≤ 2n−2∥⃗b∗n∥2

which gives us |α| ≤ 2(n−2)/2.

This gives us a bound on the number of (integer) coefficients we need to choose from. Specifically, the
number of coefficients to choose from is at most 2 · 2(n−2)/2 = 2n/2.

Remark 3.2.2. Thus, if we consider v⃗ =
∑

i uib⃗i and t⃗ =
∑

iwib⃗∗i , the number of choices of un ∈ [wn −
2

n−2
2 , wn + 2

n−2
2 ], which has at most 2

n
2 integer options.

This gives us a reduction for CVP(n) (where n is the rank of B) to CVP(n− 1) that makes 2
n
2 calls to the

CVP(n− 1) oracle. The reduction works by iterating through all possible integer coefficients for b⃗n in the
valid range. Formally, the following is the reduction algorithm.

Algorithm 6 CVP(B,n, t)

Input: Lattice basis B, rank n, target t.
Output: The closest vector v⃗ ∈ L(B) to the target t.

1: if n = 0 then
2: Return 0⃗
3: end if
4: Compute the Gram-Schmidt vectors: [⃗b∗1, . . . , b⃗

∗
n]

5: Compute w = ⟨⃗t,⃗b∗n⟩
⟨⃗b∗n ,⃗b∗n⟩

6: x⃗ = 0
7: for i = ⌊w − 2

n−2
2 ⌋, . . . ⌈w + 2

n−2
2 ⌉ do

8: y⃗ = CVP({⃗b1, . . . , b⃗n−1}, n− 1, t⃗− i⃗bn) + i⃗bn
9: if ∥t⃗− y⃗∥2 < ∥t⃗− x⃗∥2 then

10: x⃗← y⃗
11: end if
12: end for
13: Return x⃗

Remark 3.2.3. Since there are 2
n
2 calls to CVP(n − 1), we have the following recurrence relation: T (n) =

2
n
2 T (n− 1) + poly(d). Which we can resolve to T (n) = 2O(n2) complexity.
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3.3 Closest Vector Problem using Voronoi cell

We now describe aO(4n) time deterministic algorithm based on Voronoi cell computation by Micciancio
and Voulgaris [MV10]. Without loss of generality, we assume that the lattice is full rank and L ⊆ Zn.
Unless otherwise specified, we assume that all norms are ℓ2 norms.

3.3.1 Introduction to Voronoi Cells and Voronoi Relevant Vectors

Definition 3.3.1 (Voronoi Cell). The Voronoi cell of a lattice L is defined as

V = {x⃗ ∈ Rn : ∥x⃗∥ ≤ ∥x⃗− v⃗∥, ∀v⃗ ∈ L \ {0}} .

That is, the set of points x⃗ in Rn such that ∀v⃗ ∈ L, dist(x⃗, 0) ≤ dist(x⃗, v⃗).

Figure 3.3: Voronoi Cell

Definition 3.3.2 (Half-spaces). Let a half-space defined by a vector v⃗ be defined as

Hv⃗ = {x⃗ ∈ Rn : ∥x⃗∥ ≤ ∥x⃗− v⃗∥}.

That is, the set of points such that the distance from the origin is smaller than or equal to the distance from v⃗.

O v⃗

Hv⃗

Figure 3.4: Half-space Hv⃗

Remark 3.3.3. Note that
V =

⋂
v⃗∈L\{0}

Hv⃗
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Figure 3.5: Voronoi cell as an intersection of half-spaces.

Remark 3.3.4. Note that Hv⃗ is a convex set (by definition), and the intersection of convex sets is also a convex
set. Therefore V is convex.

Remark 3.3.5. The shifts of V by a lattice point v⃗ ∈ L is a tiling of Rn. This is because each point in Rn will
belong to the Voronoi cell of its closest point in the lattice. (Here the Voronoi cell of a non-zero lattice point x is
defined similar to definition 3.3.1, the set of points in Rn whose distance from x is less than or equal to the distance
from and other lattice point.)

Figure 3.6: Voronoi cell of a lattice tiles Rn [MSW23]

Definition 3.3.6 (Voronoi Relevant Vectors). The set of vectors v⃗ ∈ L such that CVP( v⃗2 ,L) = {⃗0, v⃗} are called
Voronoi relevant vectors.

Example 3.3.7. In the example below, v⃗1, v⃗2 are both Voronoi relevant vectors since CVP(v⃗1/2,L) = {v⃗1, 0⃗}.
However, v⃗1 + v⃗2 is not, as CVP((v⃗1 + v⃗2)/2,L) = {⃗0, v⃗1, v⃗2, v⃗1 + v⃗2}.

Lemma 3.3.8. If R is the set of Voronoi relevant vectors,

V =
⋂
v⃗∈R

Hv⃗
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v1
v1
2

v2v2
2

v1 + v2

O

Figure 3.7: Voronoi Relevant vectors

Proof. Consider a w⃗ /∈ R, which means that ∃u⃗ ∈ CVP( w⃗2 ,L) such that u⃗ /∈ {w⃗, 0⃗}. Note that
∥∥∥u⃗− w⃗

2

∥∥∥ ≤∥∥∥ w⃗
2

∥∥∥ (since the RHS is the distance of w⃗/2 from 0⃗). Now consider the lattice vector w⃗ − u⃗. By triangle
inequality (and since equality case does not hold as u⃗ ̸= w⃗),

∥w⃗ − u⃗∥ <
∥∥∥∥w⃗ − u⃗− w⃗

2

∥∥∥∥+ ∥∥∥∥ w⃗2
∥∥∥∥ <

∥∥∥∥ w⃗2
∥∥∥∥+ ∥∥∥∥ w⃗2

∥∥∥∥ = ∥w⃗∥ (3.3.1)

Now consider Hu⃗ ∩ Hw⃗−u⃗. Observe that Hu⃗ ∩ Hw⃗−u⃗ ⊆ Hw⃗. [This is equivalent to prove that ∥x⃗∥ ≤
∥x⃗− u⃗∥ , ∥x⃗∥ ≤ ∥x⃗− (w⃗ − u⃗)∥ ,

∥∥∥u⃗− w⃗
2

∥∥∥ ≤ ∥∥∥ w⃗
2

∥∥∥ together imply ∥x⃗∥ ≤ ∥x⃗− w⃗∥. Expansion of the norms’
squares by inner products yields a simple proof.]
Thus, for all w⃗ ̸∈ R, we can remove Hw⃗ from the intersection of half-spaces due to the presence of
Hu⃗ ∩Hw⃗−u⃗ (note that w⃗ − u⃗ ∈ L). We can keep repeating this for various such w⃗, but not infinitely, since
the vector u⃗’s sizes are strictly decreasing (eq. (3.3.1)). Thus this process will terminate, and only when
all the remaining vectors are in R. This proves the theorem.

Lemma 3.3.9. The number of Voronoi relevant vectors is at most 2n+1

Proof. Let the set of Voronoi relevant vectors of L(B) be R with B = {⃗bi}.
Let v ∈ L(B) be a lattice vector at the boundary of the fundamental parallelepiped P(B). (Note that
there are only 2n such vectors.) Let v⃗∗ = argmin{∥x⃗∥ : x⃗ ∈ v⃗ + 2L, x⃗ ̸= 0⃗}. Then we claim that the
collection of v⃗∗ and −v⃗∗ for all v are the only possible Voronoi relevant vectors of L.
To prove the claim, assume that there exists w⃗ ∈ R, such that w⃗ /∈ {v⃗∗,−v⃗∗}. Note that, all coordinates
of w in the given lattice basis cannot be even, as in that case w⃗

2 is a lattice vector, contradicting the fact
that w⃗ is a Voronoi relevant vector. So, ∃v ∈ L(B) at the boundary of P(B) (Coordinates of v in the given
lattice basis are either 0 or 1) such that v⃗+w⃗

2 ∈ L. So,

v⃗∗ + w⃗

2
=

v⃗ + 2L+ w⃗

2
=

v⃗ + w⃗

2
+ L ∈ L

.
However,

∥∥∥ v⃗∗+w⃗
2 − w⃗

2

∥∥∥ =
∥∥∥ v⃗∗

2

∥∥∥ ≤ ∥∥∥ w⃗
2

∥∥∥. The last inequality is because of the following reasoning.
∥∥∥ v⃗∗

2

∥∥∥ is

the length of the shortest vector in the lattice v⃗
2 +L. Also, w⃗

2 + v⃗
2 ∈ L, so w⃗

2 ∈ L−
v⃗
2 = (L− v⃗)+ v⃗

2 = v⃗
2 +L.

This means that we have found a lattice vector v⃗∗+w⃗
2 whose distance from w⃗/2 is less than the distance

of 0⃗ from w⃗/2. This is a contradiction to the fact that w⃗ is Voronoi relevant. Thus |R ∩ (v⃗ + 2L)| ≤ 2.
Now since there are 2n points on the boundary of P(B), we get that |R| ≤ 2n+1.
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v⃗∗

w⃗

w⃗+v⃗∗

2

O

w⃗
2

Figure 3.8: Voronoi Relevant vectors in v⃗ + 2L

3.3.2 CVP Algorithm given Voronoi Relevant Vectors

The closest vector problem is given a target vector t⃗, we want the lattice vector x⃗ ∈ L that is closest to t.
This is equivalently, we want to find a shift of t⃗ by a lattice vector x⃗ such that t⃗− x⃗ is the shortest possible.
The following algorithm solves CVP given a set of Voronoi relevant vectors.

Algorithm 7 CVP given Voronoi relevant vectors
Input: Basis: B ∈ Rn×m, target t ∈ Rn, set of Voronoi relevant vectors R ⊂ L(B) \ {0}
Output: x⃗ ∈ L such that ||⃗t− x⃗|| is minimised.

1: Set s⃗ = t⃗
2: while s⃗ ̸∈ V do
3: Compute smallest δ > 1 such that s⃗ ∈ δV
4: Compute 1 < α ≤ 2 ∈ R, k ∈ Z≥0 such that δ = α2k

5: Find v⃗ ∈ R such that s⃗ lies on the boundary of δHv⃗

6: s⃗ := s⃗− 2kv⃗
7: end while
8: Return t⃗− s⃗

Remark 3.3.10. Note that always exists a v⃗ ∈ R such that s⃗ lies on the boundary of δHv⃗ in line 5. This is because
s⃗ lies on the boundary of δV due to line 3 which is made up of boundaries of δHv⃗ by definition.

We prove correctness for the case where δ ∈ (1, 2]. The general case follows.

Lemma 3.3.11. Let 1 < δ ≤ 2, s⃗ ∈ δV and v⃗ be a Voronoi relevant vector such that s⃗ lies on the boundary of
δHv⃗. Then ∥s⃗− v⃗∥ < ∥s⃗∥ and s⃗− v⃗ ∈ δV ⊆ 2V

Proof. First note that, since all vectors on the boundary of δHv⃗ are equidistant from δv⃗ and 0⃗, we have
that
Ä
s⃗− δv⃗

2

ä
⊥ δv⃗

2 (in fact, perpendicular to any scaling of v⃗). Write s⃗ =
Ä
s⃗− δv⃗

2

ä
+ δv⃗

2 .

∥s⃗∥2 =
∥∥∥∥s⃗− δv⃗

2

∥∥∥∥2 + Åδ2ã2 ∥v⃗∥2 (3.3.2)
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∥s⃗− v⃗∥2 =
∥∥∥∥s⃗− δv⃗

2
−
Å
1− δ

2

ã
v⃗

∥∥∥∥2 = ∥∥∥∥s⃗− δv⃗

2

∥∥∥∥2 + Å1− δ

2

ã2
∥v⃗∥2 (3.3.3)

Observe that

1 < δ ≤ 2 =⇒ 0 ≤ 1− δ

2
<

1

2
<

δ

2
=⇒

Å
1− δ

2

ã2
<

Å
δ

2

ã2
Using this with eq. (3.3.2) and eq. (3.3.3), we get that

∥s⃗− v⃗∥ < ∥s⃗∥ (3.3.4)

To see that s⃗ − v⃗ ∈ δV , recall that V is convex. s⃗ is on the boundary of δHv⃗, and so s⃗ ∈ δv⃗ + δV , which
implies s⃗− δv⃗ ∈ δV . By convexity, s⃗− v⃗ =

(
1− 1

δ

)
s⃗+ 1

δ (s⃗− δv⃗) ∈ δV .

Lemma 3.3.12. Given a vector s⃗ and lattice L with Voronoi cell V , |(s⃗− L) ∩ 2V | ≤ 4n

Proof. We prove this by contradiction. Say the cardinality is more than 4n. Then by pegionhole principle,
we can find two distinct vectors with the same remainder modulo 4 for each coefficient of the basis
vectors. Thus there exists distinct x⃗, y⃗ ∈ (s⃗− L) ∩ 2V such that x⃗− y⃗ ∈ 4L. Thus x⃗−y⃗

4 ∈ L.
Note that since x⃗, y⃗ ∈ 2V , x⃗

2 ,
y⃗
2 ∈ V . Since V is symmetric and convex, we have that − y⃗

2 ∈ V and

x⃗
2 −

y⃗
2

2
=

x⃗− y⃗

4
∈ V.

However, x⃗−y⃗
4 ∈ L and the only lattice point in V is 0⃗ =⇒ x⃗ = y⃗ contradiction.

Remark 3.3.13 (Termination of algorithm 7). We can extend lemma 3.3.11 by setting V ′ = 2kV and R′ = 2kR,
as such s⃗ − 2kv⃗ ∈ 2k+1V . Thus during the execution of Lines 2 - 6, the value of k is non-increasing. However,
note that if k remains the same, s⃗ remains in (s⃗− 2kL)∩ 2k+1V as it only changes by 2kv⃗ and remains in 2k+1V .
However, note that after each iteration, ||s⃗|| strictly decreases as ||s⃗ − 2kv⃗|| < ||s⃗|| by lemma 3.3.11, thus each
s⃗ after each iteration is distinct. If k remains the same, there are then infinite vectors in (s⃗ − 2kL) ∩ 2k+1V ,
contradicting lemma 3.3.12. Thus, k must decrease until k = 0, after which s⃗ ∈ V and the loop terminates.

Remark 3.3.14 (Runtime Complexity). Note that the initial value of k is bounded by O(log ||⃗t||). k will decrease
by 1 in at most 4n iterations. Thus, we get a complexity of O(log ||⃗t||4n)

Remark 3.3.15 (Correctness). t⃗− x⃗ ∈ V , thus ∀v⃗ ∈ L, ||⃗t− x⃗|| ≤ ||⃗t− x⃗− v⃗||, thus it is the shortest vector. As
stated at the beginning of section 3.3.2, this solves CVP, given that we know the Voronoi relevant vectors.

We now have an algorithm for CVP, given that we know the Voronoi relevant vectors. Let TVor(n) denote
the time to compute the Voronoi cell (that is, find all the Voronoi relevant vectors) in n dimensions. Let
TCVP(n, k) denote the time to solve k instances of CVP in n dimensions. Observe that if we are given
a CVP oracle, then we can compute the Voronoi cell. This can be done by solving a CVP instance for
each of the 2n cosets of the lattice. Precisely, let b1, . . . bn be the basis of a lattice, and v :=

∑
j αjbj ,

such that αj ∈ {0, 1}. Note that there are 2n such vectors, and they correspond to the vertices of the
fundamental parallelepiped. One can solve CVP(2L, v) for each such v, which would give us at most
two of the Voronoi relevant vectors each. Thus, we have the following reduction.

TVor(n) ≤ TCVP(n, 2
n)
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Now, recall algorithm 6. To solve CVP, one can guess the last coordinate of the closest vector, and recurse
on the n − 1 dimensional lattice. There are 2n+1 such choices for the last coefficient. This gives us the
following reduction.

TCVP(n, 2
n) ≤ TCVP(n− 1, 2n+1 · 2n) = TCVP(n− 1, 22n+1)

From remark 3.3.14, we can solve CVP in 4n time, if we are given the Voronoi relevant vectors. Hence,
we also have the following reduction

TCVP(n− 1, 22n+1) ≤ TVor(n− 1) + 4n · 22n+1 · poly(n).

Observe that the two terms above are additive because we only need to compute the Voronoi cell once,
after which we can solve all the 22n+1 instances of CVP(n − 1). Now, observe that combining the above
three equations, we have a reduction from computing the Voronoi cell in n dimensions to computing the
Voronoi cell in n− 1 dimensions, by paying an additional cost of 16n · poly(n). Unfolding this recurrence
n− 1 times, we can see that

TVor(n) ≤ 16n · poly(n).

Thus,

TCVP(n, 1) ≤ 16n · poly(n) + 4npoly(n).

We note that a better analysis gives us a time complexity of 4n.
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Chapter 4

Shortest Vector Problem

By now it is clear that SVP is an important problem. We will soon see an algorithm for the exact shortest
vector problem. Table 4.1 gives a summary of the history of exact SVP.

Reference Time Complexity Remarks
Kannan [Kan83] n

n
2e

+o(n) Enumeration; Also solves CVP
Ajtai, Kumar and Sivakumar [AKS01] 2O(n) Randomized Sieve

Micciancio and Voulgaris [MV10] 4npoly(n) Deterministic, also solves CVP
[ADRS15] 2n + o(n) A follow-up work also solves CVP [ADS15]

Table 4.1: A brief history of exact SVP

The best known algorithm solves nk approximate SVP in time roughly 2
n

k+1 . The main idea follows the
LLL algorithm, with reduction applied to a block of the basis vectors, instead of two basis vectors at once.
We will first learn about dual lattices.

4.1 Dual Lattice

The dual lattice of any lattice is the set of all points v⃗ in the span on the lattice such that the inner product
of v⃗ with any lattice vector is an integer. Formally,

Definition 4.1.1 (Dual Lattice). Given a lattice L ⊂ Rd of rank n, the set

L∗ := {y⃗ ∈ span(L) : ∀x⃗ ∈ L, ⟨x⃗, y⃗⟩ ∈ Z}

is called the Dual Lattice of L.

As an example, consider the integer lattice, Zn. Clearly, it’s dual lattice is itself (Zn)∗ = Zn, since all
the vectors in the span of Zn which have integer inner product with Zn are in Zn, and vice versa. Also
observe that (2Zn)∗ = 1

2Z
n.

For a full rank lattice L with basis B := (⃗b1, . . . b⃗n), the basis of the dual lattice L∗ is given by (B⊤)−1.
(Observe that the inner product of any vector in the integer span of (B⊤)−1 with a vector in L(B) will be
an integer.) For any lattice (not necessarily full-rank), the basis of the dual lattice is given as B(B⊤B)−1,
the pseudo-inverse of B.

This chapter is based on lectures 6, 7 and 8.
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Figure 4.1: An example of the dual lattice [Reg04]

Lemma 4.1.2 (Dual Basis). L(B)∗ = L(B(B⊤B)−1)

Proof. Let D = B(B⊤B)−1. Observe that B⊤D = I . First we prove that L(D) ⊆ L(B)∗. Observe that
∀i, j ∈ [n] :

¨⃗
bj , d⃗i

∂
∈ {0, 1}. Then, for any u⃗ ∈ L(D), v⃗ ∈ L(B), we have that u⃗ =

∑
i aid⃗i, v⃗ =

∑
j cj b⃗j ,

such that ∀i, j ∈ [n] : ai, cj ∈ Z. Then, ⟨u⃗, v⃗⟩ =
∑

i,j aicj
¨
d⃗i, b⃗j

∂
∈ Z, and thus any such u⃗ is in the dual

lattice.
Next, we prove that L(B)∗ ⊆ L(D). Let v ∈ L(B)∗. Observe that since span (L(D)) = span (L(B)),
∃α1, . . . αn ∈ R such that v⃗ = α1d⃗1 + . . . αnd⃗n. Then ∀i ∈ [n],

¨
v⃗, b⃗i
∂
= αi. Since v was in the dual lattice,

αi ∈ Z. Thus, v⃗ ∈ L(D). This concludes the proof.

In what follows, we assume that the lattice is full rank. We mention the following corollaries without
proof, which follow simply from the definition of the dual basis.

Claim 4.1.3. For any lattice L, we have that

1. (L∗)∗ = L

2. det(L∗) = 1
det(L)

Observe that the second point above gives us a clue about the sparsity of the lattice. If the primal lattice is
very dense, the dual lattice will be very sparse, and vice versa. Formally, we have the following relation.

Claim 4.1.4. λ1(L) · λ1(L∗) ≤ n

We note that in fact, a stronger relation λ1(L) · λn(L∗) ≤ n holds true, which we will not prove.

Proof. From Minkowski’s theorem we know that λ1(L) ≤
√
n det(L)1/n, and that λ1(L∗) ≤

√
n det(L∗)1/n.

Using the second item of claim 4.1.3 and these two inequalities, we get the desired result.

Claim 4.1.5. λ1(L) · λn(L∗) ≥ 1.

Proof. Let u⃗ be the shortest vector in L. ∥u⃗∥ = λ1(L). Let v⃗1, . . . v⃗n be linearly independent vectors in L∗,
such that ∀i ∈ [n], ∥v⃗i∥ ≤ λi(L∗). Then since span (L) = span (L∗), we have that ∃i ∈ [n] : ⟨u⃗, v⃗i⟩ ̸= 0.
Since, ⟨u⃗, v⃗i⟩ ∈ Z, | ⟨u⃗, v⃗i⟩ | ≥ 1. Therefore, 1 ≤ | ⟨u⃗, v⃗i⟩ | ≤ ∥u⃗∥ ∥v⃗i∥ ≤ λ1(L)λn(L∗).
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Given a basis b⃗1, . . . b⃗n for a lattice and some vector v⃗, let πi(v⃗) denote the vector v⃗ projected onto the space

span
Ä⃗
b1, . . . b⃗i−1

ä⊥
. Observe that the GSO vectors can be written using this notation as b⃗1, π2(⃗b2), π3(⃗b3), . . . πn(⃗bn).

Claim 4.1.6. Let d⃗1, . . . d⃗n be a basis of the dual lattice of L(⃗b1, . . . b⃗n). Then ∀i ∈ [n], (πi(⃗bi), . . . πi(⃗bn)) and
(d⃗i, . . . d⃗n) are dual basis.

Proof. First note that span
Ä
πi(⃗bi), . . . πi(⃗bn)

ä
= span

Ä
d⃗i, . . . d⃗n

ä
. This is because

¨
d⃗j , b⃗k

∂
= δj,k, which

means that the space on the RHS is indeed orthogonal to b⃗1 . . . b⃗i−1, and has the same rank to the LHS.
Next, observe that ∀j, k ≥ i,

¨
πi(⃗bk), d⃗j

∂
=
¨⃗
bk, d⃗j

∂
+ α1

¨⃗
b1, d⃗j

∂
+ . . . αi−1

¨⃗
bi−1, d⃗j

∂
=
¨⃗
bk, d⃗j

∂
= δk,j

(note that all other inner product terms are 0, by the definition of dual basis). This means that the dual
lattice of L(πi(⃗bi), . . . πi(⃗bn)) has basis (d⃗i, . . . d⃗n), and vice versa, as claimed.

4.2 Korkin-Zolotarev Basis

Suppose our goal is to find a nice basis for a lattice. We saw that in polynomial time we can use LLL to get
a reduced basis, such that the vectors are somewhat orthogonal and short (which is what we generally
want from these nice basis). Now let’s see what we can do if we have a budget of more than polynomial
time. We begin by defining the Korkin-Zolotarev (KZ) basis.

Definition 4.2.1 (Korkin-Zolotarev (KZ) basis). We define it recursively. Given a rank n lattice L, a basis
b⃗1, . . . b⃗n is called the KZ basis if the following two conditions hold:

1. ∀i ∈ [n] :
∥∥∥πi(⃗bi)∥∥∥ = λ1(πi(L)).

2. ∀i, j ∈ [n], i < j : |µi,j | ≤ 1
2 .

Note that the second condition guarantees that the KZ basis is length-reduced, same as the LLL basis
(adding an integer multiple of one basis vector to another will not decrease its length.) Definition 4.2.1
can be equivalently stated as: b⃗1 is a shortest non-zero lattice vector of L, and

¶
π2(⃗b2), . . . π2(⃗bn)

©
is the

KZ reduced basis of the projected lattice π2(L). To see why, let L′ = π2(L) be the lattice L projected
orthogonal to b⃗1. Let, c2, . . . cn be the KZ basis of L′. Define b⃗i = ci + αi⃗b1 for i = 2, . . . n such that
αi ∈ (−1

2 ,
1
2 ] is the unique value such that b⃗i ∈ L.

Lemma 4.2.2. For any lattice L, there exists a basis b⃗1, . . . , b⃗n such that

min(∥⃗b∗1∥, . . . , ∥⃗b∗n∥) ≥
λ1(L)
n

,

where b⃗∗1, . . . , b⃗
∗
n are the Gram-Schmidt orthogonalization (GSO) vectors of the basis.

Proof. Let d⃗1, . . . , d⃗n be the dual basis obtained by D = B(B⊤B)−1, where B corresponds to the original
basis b⃗1, . . . , b⃗n. We first prove a technical claim:

Claim 4.2.3. Let d⃗∗n, . . . , d⃗∗1 be the GSO vectors of d⃗n, . . . , d⃗1 in this reverse order. Then ∀i,

d⃗∗i =
b⃗∗i

∥⃗b∗i ∥2
,

where b⃗∗i ’s are the GSO vectors obtained in the order of b⃗1, . . . , b⃗n.
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Proof of Claim 4.2.3. We prove this by induction. For the base case i = 1, observe that:

1. d⃗∗1 is orthogonal to d⃗∗n, . . . , d⃗
∗
2 by definition.

2. b⃗∗1 is orthogonal to d⃗∗n, . . . , d⃗
∗
2 due to B⊤D = I .

3. Both B and D are full-rank, so d⃗∗1 and b⃗∗1 must be co-linear.

Therefore, d⃗∗1 ∈ Span(⃗b∗1) = Span(⃗b1).
From B⊤D = I , we know that b⃗1 is orthogonal to d⃗2, . . . , d⃗n and thus to d⃗∗2, . . . , d⃗

∗
n. This implies:

⟨⃗b1, d⃗1⟩ = ⟨⃗b1, d⃗∗1⟩ = ∥⃗b∗1∥ · ∥d⃗∗1∥ = 1⇒ ∥d⃗∗1∥ =
1

∥⃗b∗1∥
.

Combining these results proves the claim for i = 1.
For the inductive step, we use the fact that πi(⃗bi), . . . , πi(⃗bn) is the dual basis of d⃗i, . . . , d⃗n (claim 4.1.6),
where πi is the projection function defined as:

πi(x⃗) =
∑
j≥i

⟨x⃗, b⃗∗j ⟩
⟨⃗b∗j , b⃗∗j ⟩

b⃗∗j .

The GSO vectors of πi(⃗bi), . . . , πi(⃗bn) are b⃗∗i , . . . , b⃗
∗
n. We can then apply the same argument as for i = 1 to

prove the claim for all i.

Now, we return to the proof of Lemma 4.2.2. Let d⃗1, . . . , d⃗n be the Korkine-Zolotarev (K.Z.) basis of L∗

and b⃗n, . . . , b⃗1 be the dual basis of d⃗1, . . . , d⃗n in reverse order. From Claim 4.2.3, we have:

∥d⃗∗i ∥ =
1

∥⃗b∗i ∥
.

Thus, the following statements are equivalent:

min
Ä
∥⃗b∗1∥, . . . , ∥⃗b∗n∥

ä
≥ 1

n
λ1(L)⇔ max

Ä
∥d⃗∗1∥, . . . , ∥d⃗∗n∥

ä
≤ n

λ1(L)
.

We know that λ1(L) ·λ1(L∗) ≤ n (claim 4.1.4), and by the definition of the K.Z. basis, ∥d⃗∗1∥ = λ1(L∗). This
immediately implies:

∥d⃗∗1∥ ≤
n

λ1(L)
.

For i > 1, we use the fact that πi(d⃗i), . . . , πi(d⃗n) is the dual basis of b⃗i, . . . , b⃗n. The same argument implies:

max
Ä
∥d⃗∗i ∥, . . . , ∥d⃗∗n∥

ä
≤ n− i+ 1

λ1(L(⃗bi, . . . , b⃗n))
≤ n

λ1(L)
.

The last inequality holds because removing any vectors from a given basis results in a new lattice whose
shortest vector is at least as long as the previous shortest vector.
Combining these results completes the proof of Lemma 4.2.2.
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4.3 GapSVPn(d) ∈ coNP

Recall the GapSVP problem.

Definition 4.3.1 (GapSVPγ). Given a lattice basis B, and d > 0, decide if

• YES: λ1(L(B)) ≤ d

• NO: λ1(L(B)) > γ · d

Following corollary follows from lemma 4.2.2.

Corollary 4.3.2. GapSVPn(d) ∈ coNP

Proof. We show that coGapSVPn(d) ∈ NP. That is, we want a witness for the case λ1(L(B)) > n ·d, which
will simply the basis v⃗1, . . . v⃗n for L, as defined in lemma 4.2.2. The verifier checks if

1. v⃗1, . . . v⃗n is a basis of L.

2. min(∥v⃗∗1∥ , . . . ∥v⃗∗n∥) > d.

Observe that if we were in the YES case, that is, λ1(L(B)) > n · d, it follows that

min(∥v⃗∗1∥ , . . . ∥v⃗∗n∥) ≥
λ1

n
> d.

Otherwise (that is, λ1(L(B)) ≤ d case), we use Theorem 1.4 from lecture two, which says that for all basis
of L, min(

∥∥∥⃗b∗1∥∥∥ , . . .∥∥∥⃗b∗n∥∥∥) ≤ λ1(L). This implies that for any witness (basis) that Merlin returns, we have
that

min(
∥∥∥⃗b∗1∥∥∥ , . . .∥∥∥⃗b∗n∥∥∥) ≤ λ1(L) ≤ d

4.4 Algorithm for Approximate SVP

The best known algorithms for exact SVP include a deterministic 4n time algorithm [MV10] (the compu-
tation of Voronoi cells we have seen in chapter 3 also allows us to solve SVP,) and a randomized 2n-time
algorithm [ADRS15]. Recall that we also know a polynomial time algorithm for 2n/2-approximate SVP,
the LLL algorithm from chapter 2. Lattices problems are heavily used in modern cryptography. In crypt-
analysis, we often have a budget exceeding polynomial time, say 2k+o(n) operations. We may ask: what
is the best possible approximation factor for the SVP problem given a compute budget of 2k+o(n)? We will answer
this question. We start with the concept of a primitive vector.

Definition 4.4.1 (Primitive Vector). A primitive vector v⃗ ∈ L is a vector such that ∀c ∈ Z \ {−1, 0, 1}, v⃗c /∈ L.

Equivalently, a primitive vector is the shortest non-zero lattice vector within its own integer span. Note
that for an integer lattice, these are all the points whose coordinates have GCD unity. We state an impor-
tant property of primitive vectors:

Lemma 4.4.2. For any primitive vector v⃗ ∈ L, there exists a basis of L of the form {v⃗, b⃗2, . . . , b⃗n}.

Proof. Part of the next problem set.
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Corollary 4.4.3. For any primitive vector v⃗ ∈ L,

det(L⊥v⃗) =
det(L)
∥v⃗∥

.

Corollary 4.4.4. Given a lattice L whose dual lattice is L∗, for any primitive vector v⃗ ∈ L∗,

det(L⊥v⃗) =
1

det(L∗⊥v⃗)
=

∥v⃗∥
det(L∗)

= det(L) · ∥v⃗∥.

Lemma 4.4.5. Let A be an algorithm that given a lattice L of rank n, finds a vector v⃗ ∈ L of length at most
γ · det(L)1/n, where γ can be a function of n. Then there is a polynomial time algorithm A that takes A as an
oracle and finds a non-zero vector v⃗ ∈ L of length at most γ2 · λ1(L).

Proof. Aworks as follows. It first uses the oracle to find z⃗1 ∈ L such that ∥z⃗1∥ ≤ γ · det(L)
1
n . Then it uses

the oracle to find w⃗ ∈ L∗ such that ∥w⃗∥ ≤ γ · det(L∗)
1
n . Then it recursively calls itself with the (lower

dimensional) lattice L∩ w⃗⊥ to find a vector z⃗2 with ∥z⃗2∥ ≤ γ2 ·λ1(L∩ w⃗⊥). It outputs the shorter of z⃗1, z⃗2.

Correctness. It is easy to see that L ∩ w⃗⊥ is a lattice of lower dimension. A nonzero vector w⃗ ∈ L∗
can be interpreted as a linear function f : L → Z, defined as f(v⃗) = ⟨v⃗, w⃗⟩. For a given w⃗, the lattice
L is divided into infinitely many equivalence classes based on the value of f . Each class will lie on a
hyperplane. Each such hyperplane is perpendicular to w⃗. Consider any such hyperplane w⃗⊥. Consider
a vector x⃗ ∈ L such that it has a non-zero component on w⃗, x⃗ ̸∈ w⃗⊥. Then we have

1 ≤ | ⟨x⃗, w⃗⟩ | ≤ ∥x⃗∥ ∥w⃗∥ =⇒ ∥x⃗∥ ≥ 1

∥w⃗∥
. (4.4.1)

This shows that the distance between any consecutive hyperplane is 1
∥w⃗∥ . The correctness follows by

induction. Let v⃗∗ ∈ L be a shortest vector.

Case 1: v⃗∗ ∈ (L ∩ w⃗⊥). Then, λ1(L) = λ1(L ∩ w⃗⊥) so z⃗2 is of the desired length.

Case 2: v⃗∗ /∈ (L ∩ w⃗⊥). From eq. (4.4.1), ∥v⃗∗∥ ≥ 1
∥w⃗∥ . Then, from the promise of the oracle, we have that

λ1(L) ≥
1

∥w⃗∥

≥ 1

γ · det(L∗)
1
n

(oracle’s promise)

=
1

γ
· det(L)

1
n

=⇒ det(L)
1
n ≤ γ · λ1(L)

∴ ∥z⃗1∥ ≤ γ · det(L)
1
n (oracle’s promise)

≤ γ2 · λ1(L).

Hence z⃗1 is of the desired length. Since z⃗1 or z⃗2 is a desired length, the shorter of the two will be of the
desired length.

Complexity. A clearly calls the oracle at most n times, and performs poly(n) auxiliary computations.

We are now ready to present an algorithm that returns a vector which is within k
n
2k factor of det(L)1/n.

Algorithm 8, together with lemma 4.4.5 achieves a k
n
k -approximation for SVP.
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Algorithm 8 Algorithm A(L, τ)
1: Input: Basis B of lattice L, depth parameter τ , parameter k.
2: if rank(L(B)) ≤ k then
3: Use an exact SVP oracle on B to obtain y⃗ ← SVP(B)
4: return y⃗
5: else if τ = 0 then
6: Run LLL on B to obtain y⃗ ← LLL(B)
7: return y⃗
8: else
9: ω⃗ ← A(L∗, τ − 1), where L∗ is the dual of L(B)

10: y⃗ ← A(L ∩ ω⃗⊥, τ)
11: return y⃗
12: end if

This recursive algorithm uses a depth parameter τ to control the recursion depth when calling the algo-
rithm on the dual lattice. This ensures that the repeated calls eventually terminate when τ = 0. Note
that L ∩ ω⃗⊥ is well defined: if v⃗ ∈ w⃗⊥ then ⟨v⃗, w⃗⟩ = 0 ∈ Z; w⃗ ∈ L∗ and ⟨v, w⟩ ∈ Z imply v⃗ ∈ L.

4.4.1 Analysis of Approximation Factor

Let γ(n, τ) denote the approximation factor (wrt det(L)1/n) achieved by Algorithm 8 on an n rank lattice
with depth parameter τ . So, if the algorithm return a vector v⃗, we know that ∥v⃗∥ ≤ γ(n, τ) det(L)1/n. We
aim to find an expression for γ(n, τ) that satisfies the recursive structure of the algorithm.
We start with the base cases:

γ(n, τ) ≤
®
2n/2 when τ = 0 (LLL),
k1/2 when n = k (Minkowski’s First Theorem).

For the recursive case, we have:

∥ω⃗∥ ≤ γ(n, τ − 1) · det(L∗)1/n, (4.4.2)

∥y⃗∥ ≤ γ(n− 1, τ) · det(L⊥ω⃗)
1/(n−1). (4.4.3)

Note that without loss of generality, we can assume that w is primitive, as L ∩ w⊥ remains the same if w
is scaled up. Combining equations (4.4.2), (4.4.3), and Corollary 4.4.4, we get:

∥y⃗∥ ≤ γ(n− 1, τ) · (det(L) · ∥ω⃗∥)1/(n−1)

≤ γ(n− 1, τ) · (det(L) · γ(n, τ − 1) · det(L∗)1/n)1/(n−1)

= γ(n− 1, τ) · γ(n, τ − 1)1/(n−1) · det(L)1/n. (4.4.4)

This implies:
γ(n, τ) ≤ γ(n− 1, τ) · γ(n, τ − 1)1/(n−1). (4.4.5)

To find a closed-form expression for γ(n, τ), we make an educated guess based on the recurrence relation.
Let’s consider the simplified case where we ignore the depth parameter τ :
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γ(n) ≤ γ(n− 1) · γ(n)1/(n−1) (4.4.6)

⇒ γ(n)(n−2)/(n−1) ≤ γ(n− 1) (4.4.7)

⇒ γ(n)1/(n−1) ≤ γ(n− 1)1/(n−2) (4.4.8)

⇒ γ(n)1/(n−1) ≤ γ(k)1/(k−1) (4.4.9)

⇒ γ(n)1/(n−1) ≤ k1/(2(k−1)) (4.4.10)

⇒ γ(n) ≤ k(n−1)/(2(k−1)). (4.4.11)

To account for the depth parameter τ , we introduce an error term above.

Claim 4.4.6.
γ(n, τ) ≤ k(n−1)/(2(k−1)) · 2n3/2τ .

Proof. We can verify this bound by substituting it into the recurrence relation (4.4.5):

γ(n, τ) ≤ γ(n− 1, τ) · γ(n, τ − 1)1/(n−1)

= k(n−2)/(2(k−1)) · k1/(2(k−1)) · 2((n−1)3+n3/(n−1))/2τ

≈ k(n−1)/(2(k−1)) · 2n3/2τ .

For the base case τ = 0, we have 2n
3/2τ = 2n

3
, which upper bounds the approximation factor given by

LLL.

By setting τ = 4 log n, we get 2n
3/2τ = 21/n. This implies that our final approximation factor becomes:

γ(n, τ) ≤ k(n−1)/(2(k−1)) · 21/n ≈ kn/(2k).

4.4.2 Analysis of Running Time

Theorem 4.4.7. Given inputs B, which is the basis of an n-rank lattice (n > k), and depth parameter τ = 4 log n,
the running time of Algorithm 8 is 2k+O(log2 n).

Proof. Let T (n, τ) denote the number of calls to the SVP oracle when running algorithm 8 with an n-
dimensional lattice and depth parameter τ . We have the following base cases:

T (n, τ) =

®
1 if n = k,

0 if τ = 0.

For the recursive case, we have:

T (n, τ) = T (n, τ − 1) + T (n− 1, τ). (4.4.12)

We claim that:

T (n, τ) =

Ç
n+ τ − k − 1

τ − 1

å
satisfies the the base cases, which is immediate, and the recurrence relation (4.4.12).
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To verify this, observe that:

T (n, τ − 1) =

Ç
n+ (τ − 1)− k − 1

(τ − 1)− 1

å
=

Ç
n+ τ − k − 2

τ − 2

å
,

T (n− 1, τ) =

Ç
(n− 1) + τ − k − 1

τ − 1

å
=

Ç
n+ τ − k − 2

τ − 1

å
.

Recall Pascal’s Identity: Ç
m

r

å
=

Ç
m− 1

r

å
+

Ç
m− 1

r − 1

å
.

Let m = n+ τ − k − 2. Then:Ç
m

τ − 2

å
+

Ç
m

τ − 1

å
=

Ç
m+ 1

τ − 1

å
=

Ç
n+ τ − k − 1

τ − 1

å
= T (n, τ).

This verifies that our proposed formula for T (n, τ) satisfies the recurrence relation.
Now, we can bound the running time:

T (n, τ) · 2k =

Ç
n+ τ − k − 1

τ − 1

å
· 2k ≤ (n+ τ)τ · 2k ≈ 2k+O(log2 n).
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Chapter 5

Integer Programming

Now we will see how concepts from the theory of lattices can be used to solve the integer programming
problem.

Definition 5.0.1 (Integer Programming Problem). Given a polytope P = {x ∈ Rn | Ax ≤ b} where A ∈
Qm×n, b ∈ Qm, determine if P contains an integer point.

Theorem 5.0.2. Integer Programming (IP) problem is NPComplete.

Proof. It is clearly in NP: given an integer point we can check if it lies in P by checking if it satisfies all
the inequalities. We will now reduce 3-SAT to IP.

For a given 3-SAT instance over the variables {xi}i∈[n] we will construct an IP instance with the same
variables. We first impose the inequalities ∀i ∈ [n] : 0 ≤ xi ≤ 1 in the IP instance. Then we convert each
clause Cj into an inequality constraint as follows. Add up each variable xi appearing in Cj , and add up
(1 − xi) each negation xi appearing in the clause, and require that the sum is ≥ 1. For example, given
a clause xi ∨ xj ∨ xk, define an inequality constraint as xi + xj + (1 − xk) ≥ 1 in the IP instance. This
completes the reduction. We now show that this is correct.
Suppose the 3-SAT instance has a solution (a {0, 1} assignment). Clearly, the same assignment will satisfy
the IP instance (notice that at least one assignment in each clause will be 1, and hence each inequality
will be satisfied.) This point is clearly an integer point. Thus, if the 3-SAT instance has a solution, the IP
instance has a solution.
Now suppose the 3-SAT instance has no solution. This means that there is no {0, 1} assignment that sat-
isfies the constraints. Clearly in this case there is no integer point that satisfies the constraints. Suppose
for contradiction that there was. Since the xi in the IP instance are integers, they must be 0 or 1 due to
the constraint 0 ≤ xi ≤ 1. Then the same variables would satisfy the 3-SAT instance (sum being at least
one).
Hence the 3-SAT instance has a solution iff the IP instance has a solution, and the reduction is obviously
poly time.

5.1 IP ∈ O(nO(n))

We will now show a O(nO(n)) time algorithm for integer programming in n varibales. We use the fol-
lowing result without proof.

This chapter is based on lectures 8 and 9.
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Lemma 5.1.1 (Algorithmic John Ellipsoids). Given a polytope P , one can efficiently compute an Ellipsoid E

such that E ⊆ P ⊆ 2n
3
2E. Equivalently, one can find a linear transformation T , a vector p⃗, and a radius r such

that B(p⃗, r) ⊆ T (P ) ⊆ B(p⃗, R), where R = 2n
3
2 r.

Here B(p⃗, r) is a ℓ2 ball of radius r centered at p⃗. We want to determine if P ∩ Zn is empty, which is
equivalent to determining if T (P ) ∩ T (Zn) is empty. Notice that T (Zn) is the lattice generated by the
basis corresponding to the linear transformation T . Let B = {⃗b1, . . . , b⃗n} be the basis for T (Zn) = L(B).
It is easy to see that if CVP(L, p⃗) ≤ r then L ∩ T (P ) is non-empty and if CVP(L, p⃗) ≥ R then it is empty.
Let B be a KZ basis (definition 4.2.1) of the lattice. This can be computed in 2n time. Let i be such that∥∥∥⃗b∗i ∥∥∥ = maxj

∥∥∥⃗b∗j∥∥∥. Now consider the following two cases:

Case 1: r >
√
n
2 ·

∥∥∥⃗b∗i ∥∥∥. Recall from eq. (3.2.1) given a lattice L and a target t, one can always find

a lattice point x⃗ ∈ L such that dist(x⃗, t⃗) ≤ 1
2

Å∑n
i=1

∥∥∥⃗b∗i ∥∥∥2ã 1
2

. Here we have that 1
2

Å∑n
i=1

∥∥∥⃗b∗i ∥∥∥2ã 1
2

≤

1
2(n

∥∥∥⃗b∗i ∥∥∥2) 1
2 =

√
n
2

∥∥∥⃗b∗i ∥∥∥ < r. Therefore, we can always find a lattice point x ∈ B(p⃗, r) ⊆ T (P ). So P

contains an integer vector.

Case 2: r ≤
√
n
2 ·

∥∥∥⃗b∗i ∥∥∥. This tells us that
∥∥∥⃗b∗i ∥∥∥ ≥ 2r√

n
, and we learn something about this lattice. We will

make use of this structure to bound the number of relevant vectors. We decompose the lattice L into a
union of lattice shifts

L =
⋃

(xi,...,xn)∈Zn−i+1

Ñ
L(⃗b1, b⃗2, . . . , b⃗i−1) +

n∑
j=i

xj b⃗j

é
.

Suppose y⃗ ∈ T (P ) ⊆ B(p⃗, R), and let y⃗ =
∑n

j=1 xj b⃗j . We will fix the coefficients xn, . . . , xi, then recurse
into the sublattice L(⃗b1, . . . , b⃗i−1). Suppose that for some j we have fixed the coordinates xn, . . . , xj+1.
Then we can get the following bound on the possible xj :

R ≥ ∥y⃗ − p⃗∥

≥
∥∥∥projection of y⃗ − p⃗ onto b⃗∗j

∥∥∥
=

∣∣∣∣∣∣xj +
n∑

k=j+1

Ñ
xk

¨
bk, b⃗

∗
j

∂¨⃗
b∗j , b⃗

∗
j

∂é− ¨p, b⃗∗j∂¨⃗
b∗j , b⃗

∗
j

∂ ∣∣∣∣∣∣ · ∥∥∥⃗b∗j∥∥∥
= |xj + c| ·

∥∥∥⃗b∗j∥∥∥
for some constant c determined by xj+1, . . . , xn. So there are at most 2R

∥⃗b∗j∥
+ 1 possible values of xj . We

then bound this:

R∥∥∥⃗b∗j∥∥∥ =
2n

3
2 r∥∥∥⃗b∗j∥∥∥ <

n2
∥∥∥⃗b∗i ∥∥∥∥∥∥⃗b∗j∥∥∥

Hence there are at most
2n2

∥∥∥⃗b∗i ∥∥∥∥∥∥⃗b∗j∥∥∥ + 1 ≤
3n2

∥∥∥⃗b∗i ∥∥∥∥∥∥⃗b∗j∥∥∥
47



choices for xj .

Let Li be the usual: projection of L onto span(⃗b∗i , . . . , b⃗
∗
n). So by definition of KZ basis we have

∥∥∥⃗b∗i ∥∥∥ =

λ1(Li). We can now bound the total number of choices for xi, . . . , xn:

Total choices ≤
n∏

j=i

3n2
∥∥∥⃗b∗i ∥∥∥∥∥∥⃗b∗j∥∥∥

= (3n2)n−i+1 · λ1(Li)n−i+1

det(Li)
≤ (3n2)n−i+1 · (n− i+ 1)

n−i+1
2 (by Minkowski’s Theorem)

≤ (3n)
5
2
(n−i+1)

Hence if we let T (n) be the total number of choices for x1, . . . , xn, we have T (n) ≤ (3n)
5
2
(n−i+1) · · ·T (i−1)

by recursing into the lattice L(⃗b1, . . . , b⃗i−1) to compute the number of choices for x1, . . . , xi−1. It’s easy to
see that this implies that T (n) ≤ n

5
2
n+o(n), so we can solve IP in O(nO(n)) by enumerating these vectors

and checking if they lie in T (P ).

5.2 Integer Programming in Polynomial Time in Total Regime

5.2.1 1-dimension: Unbounded Subset Sum

Definition 5.2.1. In the Unbounded Subset Sum (USS) problem, we are given n distinct positive integers a1 <
. . . < an and a target positive integer b with gcd(a1, . . . , an) | b. The task is to find non-negative integers
x1, . . . , xn such that

x1a1 + · · ·+ xnan = b, (5.2.1)

whenever such an n-tuple (x1, . . . , xn) ∈ Zn
≥0 exists.

The decision version of the problem is a variant of integer Knapsack, which is well known to be NP-
complete, making USS NP-hard. The following existence result is due to Erdős and Graham [EG72] and
Dixmier [Dix90]:

Theorem 5.2.2. The USS instance (a1, . . . , an, b) has a solution if gcd(a1, ..., an) divides b and b ≥ anan−1

n−1 .

Example 5.2.3. We give an example illustrating the tightness of the condition b ≥ anan−1

n−1 . Let n = 2, and
a1 < a2 are co-prime. Take

b = a1a2 − a1 − a2 < a1a2 =
anan−1

n− 1
. (5.2.2)

Seeking contradiction, suppose there exists non-negative solution x1, x2 such that b = x1a1+x2a2. Then we have
−a2 ≡ x2a2 (mod a1). Since a1 and a2 are coprime, we have a−1

2 (mod a1) exists, and so x2 ≡ −1 (mod a1).
Since x2 is non-negative, we have x2 ≥ a1− 1. Using a similar argument, we have also x1 ≥ a2− 1. But then we
have

x1a1 + x2a2 ≥ (a2 − 1)a1 + (a1 − 1)a2 = 2a1a2 − a1 − a2 > a1a2 − a1 − a2 = b, (5.2.3)

which is a contradiction.

We now give a corresponding algorithmic result:

Theorem 5.2.4. There is an algorithm that finds solutions (x1, . . . , xn) for the USS instance (a1, . . . , an, b) if
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• gcd(a1, ..., an) divides b

• b ≥ aiai−1

i−1 for all i = 2, . . . , n.

Proof. We assume without loss of generality that gcd(a1, . . . , an) = 1 since this is equivalent to finding a
solution to the instance Å

a1
gcd(a1, . . . , an)

, . . . ,
an

gcd(a1, . . . , an)
,

b

gcd(a1, . . . , an)

ã
, (5.2.4)

where the assumption is still valid since b ≥ aiai−1

i−1 implies

b

gcd(a1, . . . , an)
≥ aiai−1

(i− 1)gcd(a1, . . . , an)
≥ aiai−1

(i− 1)gcd(a1, . . . , an)2
=

ai
gcd(a1,...,an)

· ai−1

gcd(a1,...,an)

(i− 1)
. (5.2.5)

Let d = gcd(a1, . . . , an−1). The algorithm recurses as follows:

• If n = 1, then we pick x1 = b/a1, which exists since a1 = gcd(a1) divides b.

• Set xn ≡ a−1
n b (mod d), i.e., the unique integer in {0, 1, . . . , d− 1} such that d divides b− xnan.

• Recurse on instance
Å
a1
d
, . . . ,

an−1

d
,
b− xnan

d

ã
to obtain (x1, . . . , xn−1).

Note that in the second step, a−1
n (mod d) exists because gcd(d, an) = gcd(a1, . . . , an) = 1, i.e., d is

relatively prime to an. We now prove the correctness of the algorithm by induction on the n. The base
case n = 1 holds trivially. For the induction step, it is sufficient to prove

b

ai · ai−1
≤ (b− xnan)/d

ai/d · ai−1/d
(5.2.6)

since this implies

b− xnan
d

≥ ai
d
· ai−1

d
· b

ai · ai−1
≥

ai
d ·

ai−1

d ·
i− 1

for all i = 2, . . . n− 1, (5.2.7)

and so the instance
Å
a1
d
, . . . ,

an−1

d
,
b− xnan

d

ã
in the recursive step has a solution (x1, . . . , xn−1) by the

induction hypothesis. We now prove (5.2.6), which holds if and only if b ≤ (b− xnan)d, if and only if

xn(and) ≤ (d− 1)b. (5.2.8)

Since xn ∈ {0, 1, . . . , d− 1}, it is sufficient to prove that and ≤ b. Note that since an−1, . . . , a1 are distinct
positive integer multiples of d, and an−1 > . . . > a1, we have an−1 ≥ d(n− 1). It follows that

and ≤
anan−1

n− 1
≤ b (5.2.9)

as desired.
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5.2.2 Integer Linear Programming with Equalities

Definition 5.2.5. In the Integer Linear Programming (ILP) problem, we are given n distinct vectors a⃗1, . . . , a⃗n ∈
Zd and a target vector b⃗ ∈ Zd. The task is to find non-negative integers x1, . . . , xn such that

x1a⃗1 + · · ·+ xna⃗n ≤ b⃗, (5.2.10)

whenever such an n-tuple (x1, . . . , xn) ∈ Zn
≥0 exists. By denoting A = [⃗a1, . . . , a⃗n] ∈ Zd×n, the ILP problem can

equivalently be stated as finding x⃗ ∈ Zn
≥0 such that Ax⃗ ≤ b⃗.

Definition 5.2.6. In the Integer Linear Programming with Equalities (ILPE) problem, we are given n distinct
vectors a⃗1, . . . , a⃗n ∈ Zd and a target vector b⃗ ∈ Zd. The task is to find non-negative integers x1, . . . , xn such that

x1a⃗1 + · · ·+ xna⃗n = b⃗, (5.2.11)

whenever such an n-tuple (x1, . . . , xn) ∈ Zn
≥0 exists. By denoting A = [⃗a1, . . . , a⃗n] ∈ Zd×n, the ILPE problem

can equivalently be stated as finding x⃗ ∈ Zn
≥0 such that Ax⃗ = b⃗.

Remark 5.2.7. Notice that the two variants of ILP mentioned above are computationally equivalent.

• An ILPE Ax = b with d equality constraints can be reduced to an ILP with 2d inequality constraints Ax ≤ b
and −Ax ≤ −b.

• An ILP with d inequality constraints on n variables x = (x1, . . . , xn) given by Ax ≤ b can be reduced to an
ILP with d equality constraints on n+ d variables (x, y) = (x1, . . . , xn, y1, . . . , yd) given by Ax+ y = b.

Remark 5.2.8. Since ILPE problem can be interpreted as a generalization of USS problem, it is natural to consider
how to generalize the two sufficient conditions in Theorem 5.2.4. For the condition gcd divides b, we generalize
it to b⃗ ∈ L(⃗a1, . . . , a⃗n). However, an example below shows that the condition b being sufficiently large cannot be
generalized to b⃗ being sufficiently large. Consider

a⃗1 =

ï
1
2

ò
, a⃗2 =

ï
1
3

ò
, b⃗ =

ï
M
M

ò
(5.2.12)

for some integer M . Since 3a⃗1 − 2a⃗2 = [1, 0] and a⃗2 − a⃗1 = [0, 1], we have b⃗ ∈ L(⃗a1, a⃗2) = Z2. However, there
is no nonnegative integers x1, x2 satisfying x1a⃗1 + x2a⃗2 = b⃗, no matter how large M is.

Remark 5.2.9. We will assume that A is a rank d matrix. This is without loss of generality, since if A has
rank d′ < d, then we can use Gaussian elimination to find a subset of d′ linearly independent rows that forms a
matrix A′ ∈ Zd′×n. Taking b⃗′ ∈ Zd′ to be b⃗ restricted to the same rows, it suffices to find a solution to A′x⃗ =
b′. Furthermore, we will assume that a⃗1, . . . , a⃗d are linearly independent, i.e., the first d columns are linearly
independent, which can be achieved by appropriately permuting the columns.

Theorem 5.2.10. Algorithm 9 finds solutions (x1, . . . , xn) for the ILPE instance (⃗a1, . . . , a⃗n, b⃗) if the following
conditions hold:

• a⃗1, . . . , a⃗d ∈ Zd are linearly independent;

• b⃗ ∈ L(⃗a1, . . . , a⃗n);
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• there exist y1, . . . , yn ∈ R≥0 such that

n∑
i=1

yia⃗i = b⃗ and y1, . . . , yd > (n− d)

Å
max
1≤i≤n

∥a⃗i∥
ãd

. (5.2.13)

Proof. We first show that
∑n

i=1 xia⃗i = b⃗, where xi is as defined in Line 14. By our assumption, y1, . . . , yn ∈
R≥0 satisfying constraints (5.2.13) can be found in Line 1. Let

b⃗′ = b⃗−
n∑

i=1

⌊yi⌋a⃗i (5.2.14)

be as defined in Line 5, and let x′n+1, x
′
n, . . . , x

′
d+1 be the non-negative integers found Line 10. We will

show in Lemma 5.2.11 a polynomial time procedure to find x′n+1, x
′
n, . . . , x

′
d+1 satisfying (5.2.16), but we

do not directly use this property in this proof. Finally, let x′1, . . . , x
′
d be the numbers found in Line 12. By

Lines 14 and 5 and (5.2.17), we have

n∑
i=1

xia⃗i =

n∑
i=1

(
⌊yi⌋+ x′i

)
a⃗i =

n∑
i=1

⌊yi⌋a⃗i +
n∑

i=1

x′ia⃗i =
Ä⃗
b− b⃗′

ä
+ b⃗′ = b⃗. (5.2.15)

To ensure that xi = ⌊yi⌋+ x′i is a non-negative integer for each i = 1, . . . n, it is sufficient to establish that
x′1, . . . , x

′
d are all integers and x′1, . . . , x

′
d ≥ −(n − d) (max1≤i≤n ∥a⃗i∥)d. The proof for these properties is

deferred to Lemma 5.2.12. The proof uses the guarantee that x′n+1, x
′
n, . . . , x

′
d+1 satisfy (5.2.16) - see the

second last inequality in (5.2.29).

Lemma 5.2.11. There exists a polynomial time algorithm that finds x′n+1, x
′
n, . . . , x

′
d+1 satisfying (5.2.16).

Proof. We prove this claim by induction. For the base case k = n + 1,1 we take x′n+1 = 0 and we have
b⃗′ −

∑n
j=n+1 x

′
j a⃗j = b⃗′ ∈ L(⃗a1, . . . , a⃗n). Fix an arbitrary positive integer k ∈ {d + 1, . . . , n}. Suppose we

have found an x′k+1 satisfying condition (5.2.16) for i = k + 1. Specifically, we have

w⃗′ := b⃗′ −
n∑

j=k+1

x′j a⃗j ∈ L(⃗a1, . . . , a⃗k). (5.2.18)

To finish the induction step, we need to find an x′k ∈ Z≥0 such that

x′k ∈ {0, 1, . . . , Vk−1 − 1} and w⃗′ − x′ka⃗k ∈ L(⃗a1, . . . , a⃗k−1). (5.2.19)

We first find a lattice basis B = [⃗b1, . . . , b⃗d] ∈ Zd×d of L(⃗a1, . . . , a⃗k−1) using any polynomial-time al-
gorithm such as the LLL algorithm. Note that B is invertible and by Lecture 1, we have det(B) =
det(Lk−1) = Vk−1. Since w⃗′ ∈ L(⃗a1, . . . , a⃗k), there must exist some γ ∈ Z such that

w⃗′ − γa⃗k ∈ L(⃗a1, . . . , a⃗k−1). (5.2.20)

Since B is a lattice basis of L(⃗a1, . . . , a⃗k−1), we have

B−1(w⃗′ − γa⃗k) =
adj(B)

det(B)
(w⃗′ − γa⃗k) ∈ Zd =⇒ adj(B)(w⃗′ − γa⃗k) ∈ Zd det(B), (5.2.21)

1We use x′
n+1 only for the sake of induction, it has no other uses in the algorithm.
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Algorithm 9 ILPE solver

Input: a⃗1, . . . , a⃗n ∈ Zd and a target vector b⃗ ∈ Zd.
Output: x1, . . . , xn ∈ Z≥0 satisfying x1a⃗1 + · · ·+ xna⃗n = b⃗.

1: Find y1, . . . , yn ∈ R≥0 satisfying constraints (5.2.13) using an LP solver, which can be found in poly(n)
time.

2: for i = 1 to n do
3: Set zi = yi − ⌊yi⌋ ∈ [0, 1)
4: end for
5: Set b⃗′ =

∑n
i=1 zia⃗i = b⃗−

∑n
i=1⌊yi⌋a⃗i.

6: for i = n to d+ 1 do
7: Let Li = L(a⃗1, . . . , a⃗i) and set Vi = det(Li).
8: end for
9: for i = n+ 1 to d+ 1 do

10: Find x′i such that

x′i ∈ {0, 1, . . . , Vi−1 − 1} and b⃗′ −
n∑

j=i

x′j a⃗j ∈ L(⃗a1, . . . , a⃗i−1) (5.2.16)

11: end for
12: Use Gaussian elimination to find x′1, . . . , x

′
d such that

d∑
i=1

x′ia⃗i = b⃗′ −
n∑

i=d+1

x′ia⃗i (5.2.17)

13: for i = 1 to n do
14: Set xi = ⌊yi⌋+ x′i
15: end for

52



i.e., each entry of adj(B)(w⃗′ − γa⃗k) is a multiple of det(B) = Vk−1. Since w⃗′ and γa⃗k are integer vectors,
this gives us d modular equations of the form

α1 ≡γβ1 (mod Vk−1)

...
αd ≡γβd (mod Vk−1)

(5.2.22)

where αi and βi are the i-th coordinates of adj(B)w⃗′ and adj(B)⃗ak respectively. This implies that gcd(βi, Vk−1)
divides αi. Therefore, we can divide αi, βi, and Vk−1 by gcd(βi, Vk−1) to obtain

α′
1 ≡γβ′

1 (mod v′1)

...
α′
d ≡γβ′

d (mod v′d)

(5.2.23)

where each v′i is a factor of Vk−1, and β′
i and v′i are coprime. This gives

γ ≡β′−1
1 α′

1 (mod v′1),

...

γ ≡β′−1
d α′

d (mod v′d)

(5.2.24)

This gives exactly one solution γ modulo lcm(v′1, . . . , v
′
d), i.e., γ ∈ {0, 1, . . . , lcm(v′1, . . . , v

′
d) − 1} which

can be found using Chinese Remainder Theorem. By picking x′k = γ ≤ lcm(v′1, . . . , v
′
d) − 1 ≤ Vk−1 − 1,

we see that x′k satisfies (5.2.19) as desired.

Lemma 5.2.12. Let x′1, . . . , x
′
d be the numbers found in Line 12. For each i = 1, . . . , d, we have xi ∈ Z and

x′i ≥ −(n− d) (max1≤i≤n ∥a⃗i∥)d.

Proof. Write

b⃗∗ := b⃗′ −
n∑

j=d+1

x′j a⃗j =
d∑

i=1

zia⃗i +
n∑

j=d+1

(zj − x′j )⃗aj . (5.2.25)

By Lemma 5.2.11, we have b⃗∗ ∈ L(⃗a1, . . . , a⃗d). Since a⃗1, . . . , a⃗d are linearly independent, there is a unique
(x′1, . . . , x

′
d) ∈ Rd such that

b∗ =

d∑
i=1

x′ia⃗i. (5.2.26)

We have (x′1, . . . , x
′
d) ∈ Zd since b⃗∗ ∈ L(a1, . . . , a⃗d). Furthermore, it is straightforward to compute

(x′1, . . . , x
′
d) using Gaussian elimination. It remains to prove that x′i ≥ −(n − d) (max1≤i≤n ∥a⃗i∥)d for

i = 1, . . . , d. By symmetry, it is sufficient to prove that x′d ≥ −(n− d) (max1≤i≤d ∥a⃗i∥)d.
We will make use of the following equation

d∑
i=1

(x′i − zi)⃗ai =

n∑
j=d+1

(zj − x′j )⃗aj , (5.2.27)
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which can be obtained by combining (5.2.25) and (5.2.26). Let the projection of a⃗d orthogonal to a⃗1, . . . , a⃗d−1

to be ãd, and let πãd(u) be the projection of any vector u ∈ Rd in the direction of ãd. We now project both
sides of (5.2.27) in the direction of ãd. On the LHS, we obtain∥∥∥∥∥πãd

(
d∑

i=1

(x′i − zi)⃗ai

)∥∥∥∥∥ = |x′d − zd|∥ãd∥ = |x′d − zd|
Vd

Vd−1
, (5.2.28)

where the first equality follows from ãd being orthogonal to a⃗1, . . . , a⃗d−1, and the second equality follows
from properties of lattice determinant: det(Ld) = det(Ld−1)|ãd|. On the RHS, we obtain∥∥∥∥∥∥πãd

Ñ
n∑

j=d+1

(zj − x′j )⃗aj

é∥∥∥∥∥∥ ≤ ∥∥∥∥∥∥ n∑
j=d+1

(zj − x′j )⃗aj

∥∥∥∥∥∥
≤

n∑
j=d+1

∥∥(zj − x′j )⃗aj
∥∥

≤
n∑

j=d+1

|zj − x′j |
Å
max
1≤i≤n

∥a⃗i∥
ã

≤
n∑

j=d+1

Vj−1

Å
max
1≤i≤n

∥a⃗i∥
ã

≤ (n− d)Vd

Å
max
1≤i≤n

∥a⃗i∥
ã
,

(5.2.29)

where the second last inequality follows from x′j ∈ {0, 1, . . . Vj−1 − 1} for j ≥ d + 1 and zj ∈ [0, 1), and
the last inequality follows from L(⃗a1, . . . , a⃗j−1) is a superlattice of L(⃗a1, . . . , a⃗d) for each j ≥ d+1, which
implies Vj−1 = det(Lj−1) ≤ det(Ld) = Vd. Combining (5.2.27)–(5.2.29), we have

|x′d − zd| ≤ (n− d)

Å
max
1≤i≤n

∥a⃗i∥
ã
Vd−1 ≤ (n− d)

Å
max
1≤i≤n

∥a⃗i∥
ãd

, (5.2.30)

where the last inequality follows from det(Ld−1) ≤
d−1∏
i=1

∥a⃗i∥ ≤
Å
max
1≤i≤n

∥a⃗i∥
ãd−1

. Since zd ≥ 0, we have

x′d ≥ −(n− d) (max1≤i≤d ∥a⃗i∥)d as desired.

5.3 Lower bound for the Sufficient Condition

We showed a sufficient condition under which an ILPE instance has a solution that can be computed in
polynomial time. We now show that the condition is almost tight.

Theorem 5.3.1. For any d ≥ 2, there exists a⃗1, . . . , a⃗d+1 ∈ Zd, and b⃗ ∈ Zd such that b⃗ ∈ L(⃗a1, . . . , a⃗d+1) and
there exist y1, . . . , yd+1 ∈ R≥0 satisfying

d+1∑
i=1

yia⃗i = b⃗ and y1, . . . , yd >
(max1≤i≤d+1 ∥a⃗i∥)d

20
√
d

, (5.3.1)

but there do not exist non-negative integers x1, . . . , xd+1 ∈ Z≥0 satisfying
∑d+1

i=1 xia⃗i = b⃗.
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Proof. By [HB88], there exists c ≥ 5 such that there are at least d distinct primes between cd2 and cd2(1−
1/d). Let p1, . . . , pd be d distinct primes between cd2 − cd and cd2 and P = p1 · · · pd. Then we have

∆ := max
1≤i≤d

pi ∈ (cd2−cd, cd2], pi ≥ cd2−cd = cd2(1−1/d) ≥ ∆(1−1/d) and
P

pi
≥ ∆d−1(1−1/d)d−1

(5.3.2)
and for each i ∈ {1, . . . d}. Also, let pd+1 be a prime such that

∆

2
√
d
≤ pd+1 ≤

∆√
d
. (5.3.3)

Let a⃗i for i = 1, . . . , d, and let a⃗d+1, and let b⃗ be defined as follows:

a⃗1 =


p1
0
...
0

 , . . . , a⃗d =


0
0
...
pd

 , a⃗d+1 =


pd+1

pd+1
...

pd+1

 , b⃗ =


p1 · p2 · · · pd+1 − p1 − pd+1

p1 · p2 · · · pd+1 − p2 − pd+1
...

p1 · p2 · · · pd+1 − pd − pd+1

 =


pd+1(P − 1)− p1
pd+1(P − 1)− p2

...
pd+1(P − 1)− pd


(5.3.4)

Note that we have ∥a⃗i∥ ≤ ∆ for each i ∈ [d+ 1].
We first show that b⃗ ∈ L(⃗a1, . . . , a⃗d+1) by showing that L(a1, . . . , ad+1) = Zd. To see this, consider any
vector c⃗ = (c1, . . . , cd) ∈ Zd. By the Chinese Remainder Theorem, there is a unique integer γd+1 ∈
{0, 1, . . . , P − 1} such that for each i ∈ {1, . . . , d}

γd+1 ≡ p−1
d+1ci (mod pi). (5.3.5)

This implies ci − pd+1γd+1 is an integer multiple of pi. By letting

γi =
ci − pd+1γd+1

pi
∈ Z, (5.3.6)

we have
d+1∑
i=1

γia⃗i =

d∑
i=1

ci − pd+1γd+1

pi
pie⃗i + γd+1

pd+1
...

pd+1

 =
d∑

i=1

cie⃗i = c⃗. (5.3.7)

Next, we show that there exist large real y1, . . . , yd+1 ∈ R≥0 satisfying (5.3.1) Let yd+1 =
P
2 , and

yi = pd+1 ·
P

2pi
− 1− pd+1

pi
=

pd+1

pi

Å
P

2
− 1

ã
− 1 (5.3.8)

for 1 ≤ i ≤ d. Then
∑d+1

i=1 yia⃗i = b⃗. Furthermore, for all i ∈ [d], using (5.3.8), (5.3.3), (5.3.2)

yi ≥
∆

2
√
d
· ∆

d−1(1− 1/d)d−1

2
− 1− ∆√

d(cd2 − cd)
(5.3.9)

≥ ∆d

4e
√
d
− 2 (5.3.10)

≥ ∆d

20
√
d
, (5.3.11)

where we use the fact that for d ≥ 2, we have (1− 1/d)d−1 ≥ 1
e and ∆ ≥ cd2 − cd ≥ 5d2 − 5d ≥ 10.
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It remains to show that there does not exist non-negative integers x1, . . . , xd+1 such that

d+1∑
i=1

xia⃗i = x1


p1
0
...
0

+ · · ·+ xd


0
0
...
pd

+ xd+1


pd+1

pd+1
...

pd+1

 =


pd+1(P − 1)− p1
pd+1(P − 1)− p2

...
pd+1(P − 1)− pd

 = b⃗. (5.3.12)

Seeking contradiction, suppose there exist non-negative integers satisfying (5.3.12). Then, we must have

xipi + xd+1pd+1 = Ppd+1 − pi − pd+1 = (p1 · · · pd)pd+1 − pi − pd+1, (5.3.13)

for each i = 1, . . . , d, which implies that xd+1 = −1 (mod pi) for all i ∈ [d]. By Chinese Remainder
Theorem, this implies xd+1 = −1 (mod P ). Since xd+1 is non-negative, we must have xd+1 ≥ P − 1. This
implies that for 1 ≤ i ≤ d,

xipi = Ppd+1 − pi − pd+1 − xd+1pd+1 ≤ Ppd+1 − pi − pd+1 − (P − 1)pd+1 = −pi < 0, (5.3.14)

which is a contradiction.
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Chapter 6

Lattice Based Cryptography

In this chapter, we explore two related problems which are used in cryptography. The proofs of their
average-case hardness will be deferred to the next chapter.
Average-Case Hardness vs Worst-Case Hardness. Recall the RSA cryptosystem: two humongous primes
p and q are chosen in secret; their product N := pq is published as a public key. The security of RSA stems
from the believed difficulty in factoring large numbers. In this case, even though N is known to the pub-
lic, p and q are difficult to obtain. We do not go into the details for how RSA works, but the paradigm is
that some problem is believed to be hard, and based on this belief, we design cryptosystems.
One key point to note is that we not only need the worst-case hardness of a problem: if we view the
generation of a problem instance as sampling from some distribution of problems, we need that the
average instance coming from this distribution is hard, not just the worst-case. Ergo, we cannot directly
build cryptosystems from worst-case hardness; we need the hardness of the average case, with respect
to some distribution. For some lattice problems, we can find nice average case instance distribution D
such that

• It is as hard as a worst-case problem; and

• It is “useful”, say in cryptography.

6.1 Learning with Errors

For a set S, denote by v ← S an element sampled uniformly at random from S. For a distribution D,
denote by v ← D a sample from the distribution. Also, by writing x⃗, we mean x⃗ to be column vector.
Consider the following problem.

Definition 6.1.1 (Learning With Errors (LWE) [Reg05]). Let q be a fixed large prime. Let s⃗ ∈ Zn
q be a secret, and

e1, . . . , em ∈ Z be (small) unknown errors. Now given a⃗1, . . . , a⃗m ∈ Zn
q , as well as the values ⟨⃗ai, s⃗⟩+ei (mod q)

for each 1 ≤ i ≤ m, find s⃗.

Remark 6.1.2. LWE is easy without errors using: Gaussian Elimination.

In the above problem, view the a⃗i as uniformly sampled from Zn
q , i.e. a⃗← Zn

q ; and view the ei as samples
from a distribution χ on Z which outputs integers of small magnitude, e.g. uniform on {−B,−B +
1, . . . , B − 1, B}, where B ≪ q; or a discrete Gaussian with standard deviation σ ≪ q.

This chapter is based on lecture 10.
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We can stack the row vectors a⃗⊤i into a matrix A⊤, and the errors into a vector e⃗, and then rewrite the
instance compactly as

A⊤s⃗+ e⃗ =


— a⊤1 —
— a⊤2 —

...
— a⊤m —


︸ ︷︷ ︸

A⊤

 |s⃗
|

+

 e1...
em


︸ ︷︷ ︸

e⃗

.

And now given A⊤, A⊤s⃗+ e⃗, find s⃗.
The problem comes with parameters for which we have not decided their scale. For concreteness, think
of q as a large prime in the order of n4; m polynomially small in n, say O(n2); and |ei| < q

n2 with high
probability.
LWE as a lattice problem. We can view LWE as a lattice problem using the following formulation: Con-
sider the latticeL spanned by the columns of the block matrix

[
A⊤ qIm

]
. The motivation behind adding

the qIm matrix is to capture the component wise modulus (mod q) operation. Now, if e⃗ is small enough,
then s⃗ is the first n entries in the coefficient vector of the closest vector to A⊤s⃗+ e⃗ (mod q) in L.
Before we use the LWE problem to build cryptographic primitives, let’s explore an adjacent problem.

6.2 Short Integer Solution

Definition 6.2.1 (Short Integer Solution (SIS) [Ajt96]). Suppose given A ∈ Zn×m
q and b⃗ ∈ Zn

q , find short
e⃗ ∈ Zm such that Ae⃗ = b⃗ (mod q).

“Short” can take on the following definitions:

1. e⃗ ∈ {0, 1}m;

2. e⃗ ∈ {−B,−B + 1, . . . , B − 1, B}m for some B ≪ q; or

3. e⃗ in a Euclidean ball of small radius centered on the origin.

For now, let’s take A← Zn×m
q and use the second definition of “short” from above.

Remark 6.2.2. If we do not insist that the solution needs to be short, the problem is trivial via Gaussian Elimina-
tion.

Definition 6.2.3 (Total Problems). A worst-case computational search problem is total if a solution always
exists. An average-case computational search problem is total if a solution exists with high probability.

Theorem 6.2.4. If b⃗ = 0⃗ and (B + 1)m > qn then SIS is total in the worst case.

Proof. For any z⃗ ∈ {0, 1, . . . , B}m, note that Az⃗ (mod q) ∈ Zn
q ; if (B + 1)m > qn, by pigeonhole principle,

A cannot be injective so we may find z⃗1, z⃗2 ∈ {0, 1, . . . , B}m such that A(z⃗1− z⃗2) = 0. Then e⃗ := z⃗1− z⃗2 ∈
{−B, . . . , B}m is a solution to SIS.

Theorem 6.2.5. If b⃗ ← Zn
q and (2B + 1)m ≫ qn, then SIS is total in the average case. That is, a solution exists

with high probability.
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Proof Sketch. For any A ∈ Zn×m
q , define hA : Zm

q → Zn
q by z⃗ 7→ Az⃗. Recall that

{
hA : A ∈ Zn×m

q

}
forms a

universal hash family. In particular, we are hashing (2B+1)m items into qn buckets; with high probability
there will be no empty buckets, i.e. a randomly selected b⃗ ∈ Zn

q is the image of some element in Zm
q under

A.

On the other hand, if m≪ n log q
logB , then with high probability there is no solution for a random b⃗. However,

we can still plant a solution by sampling a secret e⃗← {−B, . . . , B}m and taking b⃗ = Ae⃗.

6.3 Cryptomania

Recall that the SIS problem is of the form: given A, b⃗, find e⃗ such that Ae⃗ = b⃗. We can also rewrite LWE

similarly: Given A⊤ ∈ Zm×n
q and y⃗ := A⊤s⃗+ e⃗, define A⊥ ∈ Z(m−n)×m

q to be a full rank matrix such that
A⊥A⊤ = 0 (mod q). In our setting, we can view A⊥ as a random matrix. We can now write

A⊥y⃗ = A⊥(A⊤s⃗+ e⃗) = A⊥e⃗

which is equivalent to SIS with b⃗ = A⊥y⃗. With that, we have the following remarks:

1. Planted SIS is the same as LWE;

2. The difference between SIS and LWE is mainly whether we are in the “planted” setting or in the
“total” setting;

3. Algorithmically, based on our current knowledge, the “planted” setting and “total” setting are kind
of similar;

4. Cryptographically, applications differ: SIS gives us minicrypt (one way functions, collision-resistant
hash functions, symmetric key encryption, etc), while LWE gives cryptomania (public key encryp-
tion, fully homomorphic encryption etc.).

Theorem 6.3.1. We can build a collision-resistant hash function from SIS.

Proof. We have an SIS instance (A, b, q). Let m≫ n log q
logB . For z⃗ ∈ {0, . . . , B}m, define hA(z⃗) := Ab⃗ (mod q).

Then finding distinct z⃗1, z⃗2 ∈ {0, . . . , B}m such that hA(z⃗1) = hA(z⃗2) is equivalent to finding e⃗ ∈
{−B, . . . B}m such that Ae⃗ = 0⃗ (mod q).

Remark 6.3.2. One can build the following from collision-resistant hash functions:

1. One-way functions;

2. Symmetric key encryption;

3. Digital signatures.

Theorem 6.3.3. We can build public key encryption from LWE.

Proof. We can construct a protocol achieving the following:

1. Key Generation: produce a public key pk and a secret key sk;

2. Encryption: given a message a and the public key pk, we need to define c = Enc(m, pk);
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3. Decryption: given an encrypted c and the secret key sk, we need to define a∗ = Dec(c, sk);

4. Correctness: we need Dec(Enc(a, pk), sk) = a with probability 1 or with high probability;

5. Security: for any a ̸= a′, we need Enc(a, pk) ≈ Enc(a′, pk).

We will use the following decision variant of LWE, which has been shown to be as hard as the search
variant by Regev [Reg05].

Definition 6.3.4 (Decision-LWE). Distinguish between the following distributions

• (A⊤, A⊤s⃗+ e⃗) where A⊤ ← Zm×n
q and e⃗← χ; and

• (A⊤, b⃗) where A⊤ ← Zm×n
q and b⃗← Zn

q .

Theorem 6.3.5 (Regev, 2005 [Reg05]). Search-LWE is equivalent to Decision-LWE.

We now construct the required components, using an instance of LWE, (A⊤, e) chosen as in the above
definition, where ei ≪ q

n with high probability.

1. Key Generation: Take the secret key sk = s⃗ ∈ Zn
q , sampled uniformly. The public key will be the

LWE input, pk = (A⊤, y⃗) where y⃗ := A⊤s⃗+ e⃗.

2. Encryption: for simplicity, we describe only the encoding of a ∈ {0, 1}. Sample r⃗ ← {0, 1}m and
define Enc(a) := (r⃗⊤A⊤, r⃗⊤y⃗ + a⌊ q2⌉).
Concretely, if we define v⃗ := r⃗⊤A⊤, we see that v⃗ is just the sum of a random subset of rows of A⊤,
which looks like a random vector. On the other hand, r⃗⊤y⃗ = r⃗⊤(A⊤s⃗+ e⃗) = v⃗⊤s⃗+ r⃗⊤e⃗, where r⃗⊤e⃗
is small because r⃗ is a binary vector and e⃗ is small.

With this notation, we now have

Enc(0) = (r⃗⊤A⊤, r⃗⊤y⃗) = (v⃗, v⃗⊤s⃗+ r⃗⊤e⃗)

Enc(1) = (r⃗⊤A⊤, r⃗⊤y⃗ + ⌊q
2
⌉) = (v⃗, v⃗⊤s⃗+ r⃗⊤e⃗+ ⌊q

2
⌉).

3. Decryption: check if
∣∣r⃗⊤A⊤s⃗− (r⃗⊤y⃗ + a⌊ q2⌉)

∣∣ is close to 0 or close to ⌊ q2⌉. If it is the first case, output
0; otherwise output 1. To see why this works, simply substitute:∣∣∣r⃗⊤A⊤s⃗− r⃗⊤y⃗ − a⌊q

2
⌉
∣∣∣ = ∣∣∣r⃗⊤A⊤s⃗− r⃗⊤(A⊤s⃗+ e⃗)− a⌊q

2
⌉
∣∣∣

=
∣∣∣−r⃗⊤e⃗− a⌊q

2
⌉
∣∣∣

=
∣∣∣r⃗⊤e⃗+ a⌊q

2
⌉
∣∣∣

≈ a⌊q
2
⌉.

4. Correctness is guaranteed with high probability, since a solution was “planted” initially.

5. Security: By decision LWE assumption, (v⃗, v⃗⊤s⃗+ e) looks like (v⃗, b), where b is uniform on Zq. Also,
(v⃗, v⃗⊤s⃗+e+⌊ q2⌉) ≈ (v⃗, b+⌊ q2⌉) ≈ (v⃗, b) as well. So being able to figure out a is equivalent to solving
decision LWE.

The above protocol can easily be extended to work on longer messages.
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Chapter 7

Average Case Hardness of SIS

We introduced SIS and LWE in the previous lecture, and we discussed that these problems show the
much desired property of average case hardness which make them useful in constructing cryptographic
schemes. By reducing some (believed to be) worst-case lattice problems, such as CVP, SVP and SIVP,
to SIS or LWE in the average case, we demonstrate the average-case hardness of SIS and LWE. In this
lecture, we show a reduction from worst-case SIVP to average-case SIS. This reduction was originally
shown by Ajtai [Ajt96], but we follow the reduction from the work of Micciancio and Regev [MR04].
Recall the definition of SIVP and SIS.

Definition 7.0.1 (SIVPγ). Given a basis B ∈ Zn×n, find a set of n linearly independent vectors in L(B) each of
length at most γλn(L(B)).

Definition 7.0.2 (SIS). Given A ∈ Zn×m
p , find a short vector e⃗ ∈ Zm, where ∀i ∈ [m], |ei| < B for a small

constant B such that Ae⃗ = 0 (mod p).

We present a reduction R such that

B
R−→ A← Zn×m

p ,

where B ∈ Zn×n is an instance of SIVPγ , and A is uniformly distributed over Zn×m
p . For any instance

B, the reduction R appends some randomness to B and turns it into a uniform distribution. Although
the reduction always produces a uniform distribution, the randomness generated by R helps us recover
the short vector of L(B) from the solution of the SIS instance. We begin by introducing the notion of a
distribution on the lattice vectors.

7.1 Discrete Gaussian Distribution

The probability density function (PDF) of Gaussian distribution over R with zero mean and parameter s
is

ρs(x) :=
1

s
e−πx2/s2 .

This can be generalized to Rn as the PDF

ρs(x⃗) :=
1

sn
e−π(x2

1+x2
2+···+x2

n)/s2 =
1

sn
e−π∥x⃗∥2/s2 . (7.1.1)

This chapter is based on lecture 11.
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Remark 7.1.1. Note that a centered (at 0) Gaussian distribution has the following properties (easy exercise).

1. It is directionally invariant (the function depends on the length of the vector, and is independent of the
direction).

2. The expected length of vectors sampled according ρ is s
√
n.

We can extend this notion to a discrete Gaussian distribution DL,s over a lattice Lwith parameter s. For
a set S of vectors, we define ρ(S) :=

∑
x⃗∈S ρ(x⃗). Then the discrete Gaussian distribution is defined as

follows.

Pr[X = x⃗] =
ρs(x⃗)

ρs(L)
=

e−π∥x⃗∥2/s2∑
x⃗′∈L e−π∥x⃗′∥2/s2

, (7.1.2)

where ρ is as defined in eq. (7.1.1).

7.1.1 Expected length of lattice vectors sampled from the Discrete Gaussian

It is an easy exercise to show the expected length of vectors sampled from a Gaussian distribution over
Rn. What about the expected length of lattice vectors sampled from the discrete Gaussian distribution?
In this section, we wish to give an informal exposition of this result. We first wish to study the number
of vectors of a particular length in the lattice. Let R be a real number larger than 1. Denote the number
of lattice vectors of length at most Rλ1(L) by N . To bound N , consider Euclidean balls of radius λ1(L)/2
around all lattice vectors of length at most Rλ1(L). Such balls do not overlap. The volume of each ball is
proportional to λ1(L)/2)nVn, where Vn is the volume of a ball of unit radius. The total volume of these
N balls is N(λ1(L)/2)nVn. Consider also another ball of radius Rλ1(L) + λ1(L)/2, centered at the origin.
This picture looks like fig. 7.1. By construction, these smaller balls around the lattice points are contained
in the larger ball.

λ1
2

≤ Rλ1

Rλ1 +
λ1
2

Figure 7.1: A ball covering all lattice vectors of length at most Rλ1.

Therefore, we have

N

Å
λ1

2

ãn
Vn ≤

Å
R+

1

2

ãn
λn
1Vn

=⇒ N ≤ (2R+ 1)n.

We note that this is only an informal description of the result. For a complete description, see notes on Fourier analysis
from [Reg04], or [MR04]
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Now consider the case when R is very large, say Rλ1(L)≫ λn(L). Draw the fundamental parallelepiped
shifted by lattice vectors with length at most Rλ1(L). Similarly, they do not intersect, and they are
(almost) covered by the ball centered at 0 of radius Rλ1(L) illustrated in Figure 7.2. Because Rλ1(L) ≫
λn(L), many such parallelipipeds will be contained in this ball.

vol(L)

Rλ1

≤ Rλ1

Figure 7.2: A ball covering parallelepipeds shifted by lattice vectors of length at most Rλ1, when
Rλ1(L)≫ λn(L).

Using a similar argument as before, it can be shown that

N =

Å
(Rλ1)

nVn

vol(L)

ã1+o(1)

. (7.1.3)

Thus, number of lattice vectors up to a particular length R is proportional to Rn. Observe that the total
Gaussian mass of all the vectors of a particular length is equal to the product of the mass and the number
of such vectors. In the remainder of this subsection, suppose that s ≥ nλn(L). In this parameter regime,
the discrete Gaussian distribution looks like a continuous Gaussian distribution. As an example, the mass
of lattice vectors looks as in table 7.1.

Length of Vector No. of vectors Mass of 1 vector Total mass

s C(s) e−πs2/s2 = e−π C(s)e−π

10s C(s)10n e−π100s2/s2 = e−100π 10nC(s)e−100π

...
...

...
...√

ns C(s)nn/2 e−πn C(s)nn/2e−πn

10
√
ns C(s)nn/210n e−100πn C(s)nn/210ne−100πn

Table 7.1: Total mass of lattice vectors of a particular length.

Note that, e−π < 10ne−100π < nn/2e−πn > nn/210ne−100πn. This reveals that the mass is concentrated
somewhere between the vectors of length s

√
n and 10s

√
n. The key is to observe that as R increases,

even though the number of vectors grows much larger, the mass of each vectors gets smaller much
faster. Hence, the mass of the lattice is roughly

ρs(L) ≈
∑
x⃗∈L,

s
√
n≤∥x⃗∥≤10s

√
n

ρs(x⃗).
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Now for some t⃗ ∈ Rn, consider the mass of t⃗ + L. Note that for any t⃗ ∈ Rn, we can efficiently find a
shift vector t⃗′ ∈ t⃗ + L such that

∥∥t⃗′∥∥ ≤ nλn ≤ s. This can be done by shifting it to one corner of the
fundamental parallelepiped, as the total mass remains the same. Since t⃗+ L = t⃗′ + L, we have∑

x⃗∈L,
s
√
n≤∥x⃗∥≤10s

√
n

ρs
(
x⃗+ t⃗

)
≈

∑
x⃗∈L,

s
√
n≤∥x⃗∥≤10s

√
n

ρs
(
x⃗+ t⃗′

)
≈

∑
x⃗∈L,

s
√
n≤∥x⃗∥≤10s

√
n

ρs(x⃗).

Formally the following result can be shown, using some Fourier analysis.

Fact 7.1.2. Say s ≥
√
nλn(L). For any t⃗ ∈ Rn, ρs(⃗t+ L) = ρs(L)(1± 2−n).

7.2 Reduction from SIVP to SIS

Micciancio and Regev [MR04] presented a reduction from SIVPO(n3.5) to SISm,n,p, where m = 4n2,
22n−1 ≤ p ≤ 22n. (In fact a more careful analysis reveals a reduction from SIVPO(n)). Denote by νs
the continuous Gaussian distribution over Rn. We will show that, given access to a SIS oracle, repeated
application of algorithm 10 solves SIVPO(n3.5) with high probability.

Algorithm 10 FINDVECTOR(L)
Input: A lattice L.
Output: v⃗ ∈ L : ∥v⃗∥ ≤ λn(L).

1: Find an LLL-reduced basis B of L
2: Choose s ∈ [nλn, 2nλn]
3: ∀i ∈ [m] sample IID x⃗i ← νs
4: ∀i ∈ [m], let y⃗i = x⃗i mod P(B) ▷ Note that y⃗i − x⃗i ∈ L.
5: ∀i ∈ [m], let z⃗i = ⌊py⃗i⌋/p. [See fig. 7.3].
6: Let a⃗i = B−1z⃗ip ∈ Zn

p

7: Use SIS oracle to find c1, . . . , cm ∈ {−1, 0, 1} such that
∑m

i=1 cia⃗i = 0 (mod p)
8: return v⃗ =

∑m
i=1 ci(x⃗i − y⃗i + z⃗i)

Before analyzing Algorithm 10, we need to address how we can perform Line 2 of Algorithm 10. In
particular, we need an estimate of λn(L). Recall that B is LLL reduced, so we know λ̃ ∈ [λn(L), 2nλn(L)].
This gives a guarantee that a least one of λ̃, λ̃2 , . . . ,

λ̃
2n−1 must lie in the range [nλn, 2nλn]. So we can run

n parallel copies of lines 3 - 8 and return the shortest of these n vectors returned.

Claim 7.2.1. The output of algorithm 10 v⃗ is a lattice vector such that ∥v⃗∥ ≤ O(n3.5)λn(L)

Proof. From line 6 of algorithm 10, we know that
∑m

i=1 cia⃗i = 0 (mod p). Therefore,
∑m

i=1 cia⃗i/p ∈ Zn.
Therefore,

m∑
i=1

ciz⃗i =

m∑
i=1

ci
Ba⃗i
p
∈ L.

Moreover, the vector x⃗i− y⃗i is a lattice vector. Therefore, v⃗ ∈ L. Since x⃗i’s are independently chosen from
the continuous Gaussian distribution νs, with high probability ∥x⃗i∥ ≤ 10

√
ns = O(n1.5)λn(L). Since

|ci| ∈ {0, 1}, we have that
∑m

i=1 |ci| ∥x⃗i∥ ≤ O(n1.5)λn(L) ·m = O(n3.5)λn(L) (with high probability). To
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illustrate the relation between y⃗i and z⃗i, consider packing the fundamental parallelepiped with smaller
(identically shrunk down) parallelepipeds P ′, obtained by dividing each basis vector by p.

y⃗i

z⃗i

P(B)

0
b⃗1
p

2⃗b1
p

b⃗1. . .

b⃗2
p

2⃗b2
p

b⃗2

..
.

Figure 7.3: Divide P(B) into pn subparallelepipeds

That is, P ′ := P(b1/p, . . . bn/p). We obtain pn sub-parallelepipeds, and z⃗i is selected such that y⃗i is in the
sub-parallelepiped P ′ shifted by z⃗i as in Figure 7.3. Therefore, ∥z⃗i − y⃗i∥ is bounded by the diameter of
sub-parallelepiped = diam(P(B))/p. Since B is a LLL-reduced basis, we have diam(P(B)) ≤ 2nλn · n.
Then,

m∑
i=1

|ci| ∥z⃗i − y⃗i∥ ≤
diam(P(B))

p
·m

≤ 2nλn · n · 4n2

22n−1

≪ λn(L).

It follows that ∥v⃗∥ = ∥
∑m

i=1 ci(x⃗i − y⃗i + z⃗i)∥ ≤ O(n3.5)λn(L), with high probability.

Claim 7.2.2. a⃗i’s as in line 6 of algorithm 10 are uniformly distributed in Zn
p , thus fulfilling the promise of the

SIS oracle.

Proof. We will analyze how y⃗ is distributed in P(B). In line 3-4, we pick a x⃗ from continuous Gaussian
and move it by a lattice vector to obtain y⃗. For any y⃗ ∈ P(B), the probability of obtaining y⃗ is proportional
to ρs(y⃗ + L). Since s ≥ nλn(L), by fact 7.1.2, we know that

ρs(y⃗ + L) = ρs(L)(1± 2−n).

Crucially, the probability of obtaining any particular y⃗ is the same. Therefore we have that for any a⃗ ∈ Zn
p

and z⃗ ∈ P ∩ (L/p),

Pr[⃗ai = a⃗] = Pr[z⃗i = z⃗] =
1

pn
(1± 2−n),

where a⃗ ∈ Zn
p . The first equality is due to the fact that there is a one-one correspondence between z⃗i

and a⃗i. The second equality is due to the fact that there is a one-one correspondence between a sub-
parallelepiped of volume 1

pn and a z⃗i. Hence, a⃗i is uniformly distributed in Zn
p .

Note that Algorithm 10 only produces one short lattice vector. However, we want n linearly independent
short lattice vectors. We use the following fact without proof.
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Fact 7.2.3. For any vector space V of dimension ≤ n− 1, the probability that FINDVECTOR(L) outputs a vector
in V is ≤ 0.9.

Crucially, there is a sufficient probability that we land outside any subspace.

Corollary 7.2.4. Based on Fact 7.2.3, after n2 times executions of FINDVECTOR(L), we get n linearly indepen-
dent lattice vector v⃗i’s such that ∥v⃗i∥ ≤ O(n3.5)λn(L) w.h.p..

This corollary can be proved using Azuma’s inequality.
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Chapter 8

Average Case Hardness of LWE

In this lecture we will discuss the reduction from the worst case bounded distance decoding problem to
the average case learning with errors (LWE) problem, which is the basis for many lattice-based public-key
encryption. This reduction is due to [Reg05], improvements from [Pei08]. We will reduce from a problem
called bounded distance decoding BDD. We begin with an algorithm for sampling from discrete Gaussian
when the parameter s is large.

8.1 DGS when s ≥ maxi ∥b⃗i∥ · 2n

Given a lattice basis B and a parameter s ≥ maxi ∥b⃗i∥ · 2n, output samples from the discrete Gaussian
distribution over the lattice Pr[X = x⃗] = ρs(x⃗)

ρs(L) .

Algorithm 11 Discrete Gaussian Sampling with Large Width

Input: Basis B of a lattice L and a parameter s ≥ maxi ∥b⃗i∥ · 2n

Output: Point x⃗ ∈ L such that Pr[X = x⃗] = ρs(x⃗)
ρs(L) .

1: Sample a vector w⃗ from the continuous gaussian distribution of width s.
2: Express w⃗ as following: w⃗ =

∑
i αib⃗i for α ∈ Rn.

3: Output x⃗ :=
∑

i⌊αi⌋b⃗i

Claim 8.1.1. If a random variable X denotes the output of algorithm 11 then ∀v ∈ L : Pr[X = v⃗] ≈ ρs(v⃗)
f(L) for

some f .

Proof. We know that for some v⃗ ∈ L,

Pr[X = v⃗] ∝
∫
x⃗∈P(B)

ρs(x⃗+ v⃗)dx. (8.1.1)

Note that ∥x⃗∥ ≤ nmaxi ∥b⃗i∥, since it is in the parallepiped. Now consider the ratio

This chapter is based on lecture 12.
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ρs(v⃗ + x⃗)

ρs(v⃗)
=

e−(π
||v⃗||2

s2
+π

||x⃗||2

s2
+

2π⟨v⃗,x⃗⟩
s2

)

e−π
||v⃗||2
s2

≈ e−π
||x⃗||2

s2 · e±
2||v⃗||||x⃗||

s2 (Assume largest variance)

≈ e−π
||x⃗||2

s2 · e±
2n1.5 maxi ||b⃗i||

s (∵ ||v⃗||||x⃗|| ≤ n1.5max
i
||b⃗i||s)

≈ e−π
||x⃗||2

s2 · e±
2n1.5

2n (∵ s ≥ max
i
||b⃗i|| · 2n)

Note that for e−π
∥x⃗∥2

s2 , since ∥x⃗∥2
s2
≤ n

22n
, it is a significantly smaller term, we can ignore it and we get

ρs(v⃗ + x⃗)

ρs(v⃗)
≈ e±

2n1.5

2n ≈ 1± poly(n)

2n

∴ ρs(v⃗ + x⃗) ≈ ρs(v⃗)

Å
1± poly(n)

2n

ã
We can now evaluate the earlier integral eq. (8.1.1) as

Pr[X = v⃗] ∝
∫
x⃗∈P(B)

ρs(x⃗+ v⃗)dx

≈ ρs(v⃗)

Å
1± poly(n)

2n

ã∫
x⃗∈P(B)

dx

= ρs(v⃗)

Å
1± poly(n)

2n

ã
det(L)

Therefore, the discrete Gaussian distribution is exponentially close to the continuous Gaussian distribu-
tion for the chosen parameter s.

8.2 Bounded Distance Decoding

Bounded distance decoding is a variant of CVP with an additional promise that the target is not too far
from lattice, such that there is a unique solution to the closest vector problem. See Figure 8.1.

Definition 8.2.1 (Bounded Distance Decoding (BDDα)). Given (0 < α < 1/2), B ∈ Zn×n, t⃗ ∈ Zn such that
dist(⃗t,L(B) ≤ αλ1(L(B)), find the closest vector to t⃗ in L(B).

v⃗
u⃗

λ1(L)

t⃗

d < 1
2λ1(L)

Figure 8.1: Let v⃗, u⃗ have distance λ1(L). The target is t⃗. v⃗ is the closest lattice vector to t⃗ a distance at
most 1

2λ1(L) away. Thus, t⃗ must have a unique CVP solution: v⃗.
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8.3 BDD reduces to LWE

We will be showing reduction from BDDα with α = 1/poly(n) to LWE. The reduction works as follows
(algorithm 12). As in the previous lecture, the goal is to get the correct distributions over the instances
of LWE.

Algorithm 12 Reduction from BDD to LWE.

Input: BDD instance: B ∈ Zn×m, t = B⊤x⃗+ e⃗ ∈ Zn, with promise ∥e⃗∥ ≤ αλ1(L(B))
Output: LWE instance A ∈ Zm×n

q and t⃗′ = As⃗+ e⃗′.
1: Pick s ≥ q · n · λn(L(B)∗) where q ≥ 22n

2: for i ∈ 1 . . .m do
3: Sample v⃗i ← DL∗,s ▷ Use algorithm 11
4: Compute the coefficients a⃗i = (B∗)−1v⃗i = B⊤v⃗i (mod q)
5: Sample e′i ← N (0, q

n2 )

6: Compute t′i = ⟨⃗t, v⃗i⟩+ e′i
7: end for
8: Sample y⃗ ← Zn

q

9: Let t⃗′ := t⃗′ +Ay⃗
10: Output (A, t⃗′)

We note that e′i could be picked from any other distribution, such that its magnitude satisfies the analysis
of claim 8.3.3 (dominates the already presenting error which comes from the inner product term in line
6 and converts the unknown error distribution into a known one). For correctness, we need to show that
A and t⃗′ are uniformly distributed. We recall fact 7.1.2.

Fact 8.3.1. ∀s ≥
√
nλn(L), c⃗ ∈ Rn

ρs(L+ c⃗) =

Å
1± 1

2n

ã
ρs(L)

Claim 8.3.2. The distribution of a⃗i in line 4 of algorithm 12 is statistically close to the uniform distribution on
Zn.

Proof. a⃗i are the coefficients of v⃗i in L(B∗). Note that a⃗i = a⃗ ∈ Zn
q ⇐⇒ v⃗i ∈ qL∗ +B∗a⃗. Therefore,

Pr[⃗ai = a⃗ ∈ Zn
q ] =

ρs(qL∗ +B∗a⃗)∑
c⃗∈Zn

q
ρs(qL∗ +B∗c⃗)

=
(1± 2−n)ρs(qL∗)∑

c⃗∈Zn
q
(1± 2−n)ρs(qL∗)

(∵ s ≥ qnλn(L∗) = nλn(qL∗), fact 7.1.2)

=

Å
1± 2

2n

ã
1

qn

Claim 8.3.3. The distribution of the errors e⃗′ is statistically close to normal distribution.

Proof. Note that in Line 6, when we calculate t⃗′, the error is ⟨e⃗, v⃗i⟩+ e′i, since t⃗ = Bx⃗+ e⃗. Since s is large,
we have ∥v⃗i∥ ≤ s

√
n ≈ qnλn(L∗)

√
n and ∥e⃗∥ ≤ αλ1(L) by the BDD promise.
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⟨e⃗, v⃗i⟩ ≤ ∥e⃗∥∥v⃗i∥
≤ qn

√
nαλ1(L)λn(L∗)

≤ qn2.5α (using claim 4.1.4)

We can assume α = 1
poly(n) is of some sufficient large polynomial for example: α ≤ 1

n5 , thus the error from
t⃗ is ≤ q

n2.5 . Since we choose e′i from a distribution with expected absolute value of q
n2 , the distribution of

the total error ⟨e⃗, v⃗i⟩+ e′i is dominated by e′i.

Claim 8.3.4. Finally in algorithm 12, t⃗′ = As⃗+ e⃗′ is such that s⃗ is uniformly distributed over Zn
q .

Proof. By adding Ay⃗ in line 9, where y⃗ is uniformly distributed over Zn
q , we get t⃗′ = A(x⃗+ y⃗) + e⃗′, where

x⃗ came from some unknown distribution. Thus, s⃗ = x⃗+ y⃗ is uniformly distributed.

Remark 8.3.5. Note that we can retrieve the closest vector (BDD solution) from the LWE output by subtracting y⃗
and then mapping the vector back from A to B.

Thus we have reduced an instance of BDD, to a uniformly distributed instance of LWE.

8.4 GapSVP2γ(n)
√
n Reduces to BDD 1

γ(n)

To prove that BDD is indeed a hard problem, we will reduce GapSVP2γ(n)
√
n to BDD 1

γ(n)
.

Definition 8.4.1 (GapSVPγ). Given B ∈ Rn×m and d ∈ R, output:

• YES if λ1(L(B)) ≤ d

• NO if λ1(L(B)) > γd

The reduction proceeds as follows.

Algorithm 13 GapSVP2γ(n)
√
n to BDD 1

γ(n)

Input: Basis: B ∈ Rn×m, d ∈ R
Output: YES/NO

1: ans := YES
2: for poly(n) times do
3: Sample y⃗ ← B(⃗0, d

√
n)

4: z⃗ = y⃗ (mod P(B))
5: if BDD(B, z⃗) = z⃗ − y⃗ then
6: ans := NO
7: end if
8: end for
9: Output ans

Claim 8.4.2. Algorithm 13 maps NO instance of GapSVP2γ(n)
√
n to NO instance of BDD 1

γ(n)
with probability 1.
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Proof. Since the input is a NO instance, we have

λ1(L) > 2γ(n)
√
nd =⇒ d

√
n <

λ1(L)
2γ(n)

=⇒ ∥y⃗∥ < λ1(L)
2γ(n)

,

exactly what we need for a valid BDD 1
γ(n)

instance. Therefore the BDD oracle will return 0⃗, when queried

with the vector y⃗. To see that, assume for contradiction that there is a closer vector x⃗. Then,

∥x⃗∥ ≤ ∥x⃗− y⃗∥+ ∥y⃗∥ < λ1(L)
2γ(n)

+ d
√
n <

λ1(L)
γ(n)

≤ λ1(L).

This is a contradiction. Also note that dist(y⃗,L) = dist(z⃗,L). Therefore BDD(B, y⃗) = 0⃗ and BDD(B, z⃗) =
z⃗ − y⃗. Thus the algorithm will always output NO.

Claim 8.4.3. Algorithm 13 maps YES instance of GapSVP2γ(n)
√
n to YES instance of BDD 1

γ(n)
.

Proof. Since the input is a YES instance, we have λ1(L) ≤ d =⇒ ∥y⃗∥ ≤ λ1(L)
√
n. Consider the worse

case where an adversarial BDD oracle tries to make the algorithm output NO. However, the oracle only
knows the value of z⃗ and not y⃗. Thus, if will try to guess a y⃗ ∈ B(⃗0, d

√
n) such that y⃗ (mod P(B)) = z⃗.

Let x⃗ ∈ L be an lattice vector such that ∥x⃗∥ = λ1(L(B)). As d is large, with high probability y⃗ and y⃗ + x⃗
are both in B(⃗0, d

√
n).

0⃗ x⃗

λ1(L)
y⃗ y⃗ + x⃗

Figure 8.2: Consider balls of radius d
√
n centered at the origin and x⃗. Since the radius is much larger

than λ1(L), these balls are almost completely intersecting (in high dimensions.)

The following lemma formalizes this intuition.

Lemma 8.4.4 (Symmetric difference between close spheres [GG00]). Let x⃗ ∈ Rn such that ∥x⃗∥ ≤ d. If s⃗ is a
point chosen uniformly at random from B(0, d

√
n) then with probability δ > 1− 1

nc for some position constant c,
∥s− x∥ ≤ d

√
n

We will use this lemma without proof, and with a exponentially high probability that we can get a y⃗ such
that y⃗ + x⃗ is also present in the sphere. Note that since x⃗ ∈ L, x⃗+ y⃗ (mod P(B)) = z⃗ as well. Thus given
the input of z⃗, both y⃗ and y⃗ + x⃗ are valid answers. Thus the
bdd oracle has at most a 1

2 probability of guessing the right one, and thus to output z⃗ − y⃗. Thus run-
ning this BDD check a polynomial number of times, the probability of guessing right for each one is
exponentially small.

A careful analysis reveals that the above reduction works as long as γ is O(n), which means that we can
base the hardness of LWE on the hardness of GapSVPn1.5 .
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