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According to the postulates of quantum mechanics, the evolution of a closed system is in the form of
a unitary. But when we study open quantum systems, we have to generalise the notion of a measurement
and evolution to account for the interaction between the system and the environment. If we consider
the closed system of the system under consideration and the environment (a philosophical problem, but
let’s ignore that for while), we can consider the system and the environment as the complete system, and
study it using a unitary evolution. But since we care about the system and not the environment, we trace
out the environment after the complete evolution, and study the system we want. This can alternately
be thought of as an application of a general map ε(t1,t0) that evolves the system under consideration,
accounting for the interaction with the environment. It is depicted in the figure 1 below. More on this
here.[1]

Figure 1: General evolution of a quantum system

Here, we will present a master equation for a two-level quantum (qubit) system, and solve it to get
the dynamical map Λ. We will then calculate the fixed state of the map. The, we will find the Kraus
operators corresponding to the map. Finally, we will calculate the entropy production rate for the qubit,
and try to analyse it in various ways.

In this first submission of the report, we will do the first two parts, and introduce the maser equation.
In the second and final submission, we will solve the other two parts as well, and analyse the work.

1 The Master Equation

Here we will study a system with markovian approximation. The Lindblad (or Gorini-Kossakowski-
Sudarshan-Lindblad) master equation plays a key role in this study as it is the most general generator of
Markovian dynamics in quantum systems[2]. The equation we want to study is the following:

1



dρ

dt
= L1(ρ) + L2(ρ) (1)

where,

Li = γi(ni + 1)(σ−ρσ+ −
1

2
{σ+σ−, ρ}) + γini(σ+ρσ− −

1

2
{σ−σ+, ρ}) (2)

2 The Dynamical Map

Let’s say that the initial density matrix is given as follows:

ρ(0) =

(
a0 b0
b∗0 c0

)
(3)

And at time t, the density matrix is:

ρ(t) =

(
a(t) b(t)
b∗(t) c(t)

)
= Λ(t)ρ(0) (4)

dρ

dt
=

(
ȧ(t) ḃ(t)

ḃ*(t) ċ(t)

)
(5)

We want to find the final density matrix in terms of the initial matrix. We know the following identities
about the pauli matries:

σ0 = I2, σz =

(
1 0
0 −1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
σ± = σx ± i · σy, σ+ =

(
0 2
0 0

)
, σ− =

(
0 0
2 0

)
Therefore,

σ+ = 2 |0〉 〈1| , σ− = 2 |1〉 〈0|

Now, given

Liρ = γi(ni + 1)︸ ︷︷ ︸
Γi

(σ−ρσ+ −
1

2
(σ+σ−ρ+ ρσ+σ−)︸ ︷︷ ︸

X

) + γini︸︷︷︸
∆i

(σ+ρσ− −
1

2
(σ−σ+ρ+ ρσ−σ+)︸ ︷︷ ︸
Y

) (6)

Let’s simplify.

X = 4 |1〉 〈0|ρ|0〉 〈1| − 1

2
(4 |0〉 〈0|ρ+ 4ρ|0〉 〈0|

=⇒ X = 4

(
0 0
0 a(t)

)
− 2(

(
a(t) b(t)

0 0

)
+

(
a(t) 0
b∗(t) 0

)
)

=⇒ X =

(
−4a(t) −2b(t)
−2b∗(t) 4a(t)

)
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Y = 4 |0〉 〈1|ρ|1〉 〈0| − 1

2
· 2(|1〉 〈1|ρ+ ρ|1〉 〈1|)

Y =

(
4c(t) 0

0 0

)
− 2

(
0 b(t)

b∗(t) 2c(t)

)
=⇒ Y =

(
4c(t) −2b(t)
−2b∗(t) −4c(t)

)
dρ

dt
= (Γ1 + Γ2)X + (∆1 + ∆2)Y

Also, a(t) + c(t) = 1 (∵ Tr(ρ) = 1)

∴ c(t) = 1− a(t)

dρ

dt
= (Γ1 + Γ2)

(
−4a −2b
−2b∗ 4a

)
+ (∆1 + ∆2)

(
4(1− a) −2b
−2b∗ −4(1− a)

)
Comparing with equation (5), we get 2 differential equations. Solving each of them, and using the

trace preservation property:

da(t)

dt
= (−4)a(t)(Γ1 + Γ2) + (∆1 + ∆2)(−4)(1− a(t))

da(t)

dt
= 4[−a(t)((Γ1 + Γ2 + ∆1 + ∆2) + ∆1 + ∆2]

Let Γ = Γ1 + Γ2,∆ = ∆1 + ∆2. Substituting,

da

dt
= 4(∆− a(Γ + ∆))∫ a(t)

a0

da

∆− a(Γ + ∆)
=

∫ t

0
4dt

ln
∆− a(Γ + ∆)

∆− a0(Γ + ∆)
= −4t(Γ + ∆)

e4t(Γ+∆) =
∆− a(Γ + ∆)

∆− a0(Γ + ∆)

∆− [∆− a(0)(Γ + ∆)]e−4t(Γ+∆)

Γ + ∆
= a(t)

Similarly,

db

dt
= (Γ1 + Γ2)(−2b(t) + (∆1 + ∆2)(−2b(t))∫ b(t)

b(0)

db

b(t)
=

∫ t

0
−2(Γ + ∆)dt

ln
b(t)

b(0)
= −2t(Γ + ∆)

b(t) = b(0)e−2t(Γ+∆)

Similarly, we get b∗(t) = b∗(0)e−2(Γ+∆) and c(t) = 1− a(t). This gives us the state of the system at a
general time t, which is the action of the dynamical map.
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3 Fixed states of the Dynamical Map

A fixed state is defined as a state ρfixed such that Λ(t)ρfixed = ρfixed∀t. Using this definition, and the
equation for ρ(t) calculated in the previous section, we can find the fixed states by solving for each term
individually.

∆− [∆− a(0)(Γ + ∆)]e−4t(Γ−∆) = a(0)(Γ + ∆)

∆(1− e−4t(Γ−∆) + a(0)(Γ + ∆)e−4t(Γ−∆) = a(0)(Γ + ∆)

a(0) =
∆(1− e−4t(Γ−∆)

(Γ + ∆)(1− e−4t(Γ−∆)

a(0) =
∆

Γ + ∆

From the previous section, we have

b(t) = b(0)e−2t(Γ+∆) = b(0) ∀t
⇒ b(0) = 0

Therefore, b∗(0) = 0

Also,

We know that c(0) = 1− a(0)

∴ c(0) =
Γ

Γ + ∆

That gives us the following matrix

ρfixed =

(
a(0) b(0)
b∗(0) c(0)

)
=

( ∆
∆+Γ 0

0 Γ
∆+Γ

)
These initial values for the density matrix give us a state which is fixed under the given map.

4 Kraus Operators Corresponding to the map

If we are given a dynamical map Λd, acting on a d-dimensional quantum system, we have a simple alorithm
to find he kraus operator.

1. Find the Choi matrix Cd for this map as follows:

Id ⊗ Λd(|ψ〉 〈ψ|) = Cd

where, |ψ〉 =

∑d
i=1 |ii〉√
d

where |ψ〉 is a maximally entangled state in d-dimensions.
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2. Diagonalize Cd as follows:

Cd =
∑

α λα |α〉 〈α|, where |α〉 is a d× d vector.

Now let, |α〉 =


α1

α2
...
αd2

,

and matrix A =


a1 ad+1 . . .
a2 ad+2 . . .
...

...
ad a2d . . . ad2


3. The αth Kraus operator will be given by Kα =

√
λαAα

In our case, we know how the map acts on each element of the density matrix. We can use that to
find the choi matrix directly. 1

[I2 ⊗ Λ](ρ) =

[
1 0
0 1

]
⊗ [Λ](ρ)

=

[
Λ 0
0 Λ

] [
ρ1 ρ2

ρ3 ρ4

]
=

[
Λρ1 Λρ2

Λρ3 Λρ4

]

Where ρ =

(
ρ1 ρ2

ρ3 ρ4

)

|ψ〉 =

∑d
i=1 |ii〉√
d

|ψ〉 〈ψ| =
∑d

i=1

∑d
j=1 |ii〉 〈jj|
d

Substituting d = 2, |ψ〉 〈ψ| = 1

2
(|11〉 〈11|+ |11〉 〈22|+ |22〉 〈11|+ |22〉 〈22|)

=
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1



1In the calculation of Λt it was assumed that the diagonal elements sum to 1. That will not be the case here. We instead
get a coupled differential equation. But solving that, we saw that the sum should be a constant. And therefore the form of
the matrix will not change
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Now,

C = (I2 ⊗ Λ) |ψ〉 〈ψ| = 1

2


∆−[∆−Γ]e−4t(∆+Γ)

∆+Γ 0 0 e−2t(∆+Γ)

0 Γ
Γ+∆ 0 0

0 0 ∆
Γ+∆ 0

e−2t(∆+Γ) 0 0
Γ+(+Γ) e

2
−4t(∆+Γ)

∆+Γ



C =
1

2


c1 0 0 c2

0 c3 0 0
0 0 c4 0
c5 0 0 c6


The eigenvalue is given as:

Figure 2: Eigenvalue of the Choi matrix derived above
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The eigenvector is given as:

Figure 3: Eigenvector of the Choi matrix derived above

Now that we know the eigenvalues and the eigenvector for the Choi matrix, we can follow step 3 of
the algorithm stated above to find the specific kraus operator2.

5 Entropy Production Rate

We need to find the following quantity called Entropy Production Rate:

σ(t) = − d

dt
S(ρ(t)||ρfix)

where, S(ρ1||ρ2) = Tr[ρ1(ln ρ1 − ln ρ1]

Now,

S(ρ1||ρfixed) = Tr[ρ1(ln(ρ1)− ln(ρfixed)]

= Tr(ρt ln(ρt)− Tr(ρt ln(ρfixed))

= Tr(UΛtU
−1 ln

(
UΛtU

−1
)
)− Tr(ρt ln(ρfixed))

= Tr(UΛtU
−1U ln(Λt)U

−1)− Tr(ρt ln(ρfixed))

∴ S(ρ1||ρfixed) = Tr(Λt ln(Λt))− Tr(ρt ln(ρfixed))

Note that, Λt is diagonal, since it is the eigenvalue matrix of ρt, and ρfixed is already diagonal.
Recall that

ρ(t) =

(
a(t) b(t)
b∗(t) c(t)

)
, where

a(t) =
∆− [∆− a(0)(Γ + ∆)]e−4t(Γ+∆)

Γ + ∆

b(t) = b(0)e−2t(Γ+∆)

b∗(t) = b∗(0)e−2t(Γ+∆)

c(t) = 1− a(t)

2The specific calculation here is ommitted since the operator will be used in a specific system-environment setting, which
is a situation of known Γ and ∆, and therefore simple expressions for the eigenvalue and eigenvector can be derived
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To find the eigenvalues of ρ(t), consider the following:

|ρ(t)− λ| =
∣∣∣∣x− λ b(t)
b∗(t) 1− x− λ

∣∣∣∣ = 0, where x = a(t), and 1-x = c(t)

(x− λ)(1− x− λ)− |b(t)|2 = 0

(x− λ)− (x2 − λ2)− |b(t)|2 = 0

x− λ− x2 − λ2 − |b(t)|2 = 0

λ2 − λ+ x− x2 − |b(t)|2 = 0

By solving the above equation, we get λ =
1±
√

1−4(x−x2−|b(t)|2
2

On substituting the values and further simplifying, we get the following eigenvalues:
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The eigenvectors corresponding to these eigenvalues were found to be:

Recall that

Λt =

(
λ1 0
0 λ2

)
∴ Λt ln(Λt) =

(
λ1 ln(1) 0

0 λ2 ln(Λ2)

)
and ρ =

( ∆
∆+Γ 0

0 Γ
∆+Γ

)

∴ ρ(t) ln(ρfixed) =

a(t) ln
(

∆
∆+Γ

)
0

0 c(t) ln
(

Γ
∆+Γ

)
Now,

S(ρ1||ρfixed) = Tr(Λt ln(Λt))− Tr(ρt ln(ρfixed))

= λ1 ln(λ1) + λ2 ln(λ2)− a(t) ln

(
∆

∆ + Γ

)
− c(t) ln

(
Γ

∆ + Γ

)
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On simplifying, we get:

S(ρ(t)||ρfixed) = λ1 ln(λ1) + λ2 ln(λ2)− a(t)(ln

(
∆

Γ

)
)−

ln(Γ) + ln(∆ + Γ)

=⇒
dS(ρ1||ρfixed)

dt
=

d

dt
(λ1 ln(λ1) + λ2 ln(λ2)− a(t)(ln

(
∆

Γ

)
)−

ln(Γ) + ln(∆ + Γ))

= ln(λ1)
dλ1

dt
+
dλ1

dt
+ ln(λ2)

dλ2

dt
+
dλ1

dt
− ln

(
∆

Γ

)
da(t)

dt

= ln(λ1 + 1)
dλ1

dt
+ ln(λ2 + 1)

dλ2

dt
− ln

(
∆

Γ

)
da(t)

dt

Now,

λ± =
1±

√
1− 4(a− a2 − |b|2)

2

=⇒ dλ±
dt

=
∓2|b|2(Γ + ∆)(e−2t(∆+Γ))− ȧ√

1− 4(a− a2 − |b|2)

where ȧ =
da(t)

dt
= 4[∆− a0(Γ + ∆)]e−4t(∆+Γ)

This gives us the analytical expression for the entropy production rate. Let’s see how it behaves when
we assume the initial state to be a maximally mixed state or some values of Γ and ∆.

ρ(0) =

(
1
2 0
0 1

2

)
(7)

Set γ1 = γ2 = n1 = n2 = 1. Therefore,

a(t) =
2 + e−24t

6
(8)

c(t) =
2− e−24t

6
(9)

b(t) = b∗(t) = 0 (10)

ρfix =

(
1
3 0
0 2

3

)
(11)

On simplifying for σ(t), we get

σ(t) = −4e−24t ln
2− e−24t

2 + e−24t
(12)

On plotting the value of entropy production rate with time, we get the following graph:
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Figure 4: Entropy production rate for maximally mixed state

From the graph, it can be seen that the entropy production increases from 1.908 at t = 0 to 0 pretty
quickly, and then stays close to 0. We can interpret γi to be some sort of coupling constant between the
system and the environment and ni to be a sort of “strength” of the environment. A higher value of n
should give more interesting plots for the quantity. We also want to study σ(t) as a function of both n
and γ, instead of fixing them. We thought of setting γ2 = 0 and using γ1 = γ;n1 = n and then plotting
the resultant expressions, but the time limit here did not permit the simplification required for that plot.

6 Ideas for extending this work

I want to understand how exactly n and γ are affecting the value of σ(t) and how are they affecting
the state of the system (specifically, how is the value of coherence changing under this equation.) I
thought that would be interesting since it would give some insight to how to model a qubit in the context
of gate application in a quanum circuit, by modelling the gate application as an environment and using
appropriate function for n and γ. The quantity that we want to specifically look at is Quantum coherence,
which measures the degree of superposition in a quantum system. One possible quantisation for it is l1
norm of coherence which for a density matrix ρ is defined as follows.

Cl1(ρ) =
∑
i 6=j
|ρij | (13)
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Although the practical scenario of multiple qubit interacion will be fairly more complicated, the
behaviour of coherence would certainly be interesting to see.
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