
Notes on Quantum Computing

Aditya Morolia

Last Updated: November 5, 2020

Contents

1 Preface(?!) 3

2 Introduction 4

2.1 Postulates . 4

2.2 Qubit . 5

2.3 Pauli Matrices . 5

2.4 No cloning theorem . 6

2.5 Quantum Teleportation . 7

2.6 Quantum Dense Coding . 9

2.7 Qauntum Cryptography (overview) . 10

3 Quantum Foundation 13

4 Quantum Computation 14

4.1 Basics of Quantum Computing using Qiskit 14

5 Quantum Algorithms 22

5.1 Deutsch-Jozsa algorithm . 23

6 Quantum Machine Learning 26

6.1 Parameterized quantum circuits as machine learning models 27

6.1.1 Introduction . 27

1

7 Exploratory readings 30

7.1 MIP*=RE . 30

7.2 Google Supremacy Result . 31

7.3 Quantum Game Theory . 31

7.4 Solovay-Kitaev Theorem . 31

7.5 Spectral Theorem . 32

8 Quantum Machine Learning (MOOC) 33

8.1 Basics . 33

8.2 Quantum Computing models . 34

8.2.1 Gate model of quantum computing. 34

8.2.2 Adiabatic Quantum Computing: . 34

2

1 Preface(?!)

Well this began when I asked a senior of mine for notes on basics of Quantum Computing, and

then I started typing short notes for things I kept reading because I realised one pass through

text was never enough as things were too damn connected and ideas too complicated. Now I

keep coming back to the references, looking at stuff from before to understand things better.

Of course I’m too lazy to go back through the old stuff and type it up more formally.

3

2 Introduction

Quantum Information is any physical information held in a quantum system. Quantum com-

putation and quantum information is the study of the information processing tasks that can

be accomplished using quantum mechanical systems. Quantum mechanics is a mathematical

framework or set of rules for the construction of physical theories. For example, there is a

physical theory known as quantum electrodynamics which describes with fantastic accuracy

the interaction of atoms and light.

2.1 Postulates

Following are some of the axioms of Quantum Mechanics:

• Every system has an associated Hilbert Space, which is a vector space where inner product

is defined.

• A state is a complete description of a system. It is the maximum information provided

by nature so that future measurements can be performed. A state is a unit vector in

Hilbert Space of the system.

• An observable is a property of a physical system that in principle can be measured. In

QM these are self adjoint operators. The observable have a spectral decomposition and

represented as A =
∑
an |n〉 〈n|, where |n〉 is eigenbasis of A and an is the corresponding

eigenvalue.

4

• A measurement is a process in which information about the state of the physical system

is acquired by an observer by the use of an observable. In QM, the measurement of an

observable A lead the system to collapse onto one of the observable’s eigenstate. If the

state prior to measurement is |ψ〉 then outcome an is obtained with probability |〈ψ|n〉|

and the state collapses to |n〉.

• Composite Systems: If the Hilbert space for system A is HA and that of system B is HB,

then the Hilbert space for the composite system AB is the tensor product HA

⊗
HB. If

system A is prepared in state |ψ〉A and system B is prepared in the state |ψ〉B then the

composite system state is |ψ〉A
⊗
|ψ〉B.

2.2 Qubit

Whereas the indivisible unit of classical information is the bit, which takes one of the two

possible values 0, 1, the corresponding unit of quantum information is the quantum bit or qubit.

The smallest non-trivial Hilbert space is two-dimensional. We may denote an orthonormal basis

for a 2D vector space as {|0〉, |1〉}. Then the most general normalized state can be expressed as

a |0〉+ b |1〉 where a and b are complex numbers satisfying |a|2 + |b|2 = 1. |a| is the probability

of finding |ψ〉 in state |0〉 and likewise for |1〉, when measured in the computational basis.

2.3 Pauli Matrices

In 2D Hilbert space the Pauli operators are σz, σx, σy and I. They have following matrix

representations:

5

σz =

1 0

0 −1

σx =

0 1

1 0

σy =

0 −i

i 0

Eigenvalues for all of them are 1 and -1. But eigenvectors are not the same. For σz the eigen-

vectors are |0〉 =

1

0

 and |1〉 =

0

1

 with eigenvalues 1 and -1 respectively. Similarly for

σx the eigenvectors are denoted by |+〉 and |−〉 for eigenvalues 1 and -1 respectively, where

|+〉 =
√

1
2
(|0〉+ |1〉) and |−〉 =

√
1
2
(|0〉 − |1〉).

2.4 No cloning theorem

A routine task performed in information processing is making copies of data. In classical sce-

nario copying bits is quite an easy process. But the same is not true in quantum world. We

can never make an exact copy of an arbitrary qubit. This is the No-Cloning theorem.

Consider two arbitrary states |ψ〉 and |φ〉. Let us take another state |B〉 on which we want to

copy |ψ〉 and |φ〉. Suppose that there exists an arbitrary unitary operator U such that

U |φ〉
⊗
|B〉 = |φ〉

⊗
|φ〉 . . . 1

U |ψ〉
⊗
|B〉 = |ψ〉

⊗
|ψ〉 . . . 2

Now, taking inner products of the left side of the above equations, we get

〈ψ|
⊗
〈B|U †U |φ〉 |B〉 = 〈ψ|φ〉

Now for the right hand side, we get

6

|〈ψ|φ〉|2

Equating these two results we have the following equation, 〈ψ|φ〉 = |〈ψ|φ〉|2

Which is only true of 〈φ|ψ〉 = 0, i.e. they are orthogonal or 〈φ|ψ〉 = I i.e. |φ〉 = |ψ〉.

Hence, there is no unitary operator U that can be used to clone an arbitrary quantum states.

If we can copy a state, then we can also distinguish the state easily.

2.5 Quantum Teleportation

Teleportation is the task of transferring an unknown qubit from one party to another using

classical communication channel and a shared entangled pair as the only resources.

The task is that Alice wants to transmit an unknown state to Bob, (who is physically sep-

arated from her). Let the state be a qubit (normalised) to be teleported be |X〉 = a |0〉+ b |1〉.

Let them share an entangled pair which is |φ+〉 = (|0A0B〉+ |1A1B〉)/
√

2

Here the first member of the pair (kets subscripted with A) belongs to Alice while the

second belongs to Bob. Alice and Bob have no interaction whatsoever, except the entangled

pair. So as we notice that Alice now has two qubits |X〉 and one qubit from the entangled pair.

Now, let us write the combined state including the three particle, we name it as

|ψ123〉 = (a |0〉+ b |1〉)
⊗

((|0A0B〉+ |1A1B〉)/
√

2)

7

= (a |000〉+ b |100〉+ a |011〉+ b |111〉)/
√

2

Alice decides to make measurements on her two particles in the bell’s basis which has

eigenvectors. So we rearrange the state in the following manner:

|ψ123〉 =
1

2
(a(
∣∣φ+
〉

+
∣∣φ−〉) |0B〉+b(∣∣φ+

〉
−
∣∣φ−〉) |1B〉+a(

∣∣ψ+
〉

+
∣∣ψ−〉) |1B〉+b(∣∣ψ+

〉
−
∣∣ψ−〉) |0B〉

=
1

2
(
∣∣φ+
〉

(a |0〉+ b |1〉) +
∣∣φ−〉 (a |0〉 − b |1〉) +

∣∣ψ+
〉

(a |1〉+ b |0〉) +
∣∣ψ−〉 (a |1〉 − b |0〉)

So if after measurement Alice collapses on |φ+〉, Bob’s state collapses on a |0〉+ b |1〉 (which

Alice is supposed to teleport). Similarly, for the other bell states as follows:

Alice Bob

|φ−〉 a |0〉 − b |1〉

|ψ+〉 a |1〉+ b |0〉

|ψ−〉 a |1〉 − b |0〉

So if now Bob applies Pauli operators he will get the required qubit we are needed to

teleport.

8

Before Operation Operators After Operation

a |0〉+ b |1〉 I a |0〉+ b |1〉

a |0〉 − b |1〉 σz a |0〉+ b |1〉

a |1〉+ b |0〉 σx a |0〉+ b |1〉

a |1〉 − b |0〉 σzσx a |0〉+ b |1〉

Alice informs Bob her measurement outcome via the classical communication channel us-

ing two classical bits (since four possibilities are there) and Bob performs the corresponding

operator to obtain the unknown qubit. In this way teleportation is achieved. It must be noted

that the protocol involves classical communication at the end which cannot be achieved faster

than the light and hence it is concluded that Teleportation does not violate the No-signaling

principle.

2.6 Quantum Dense Coding

Let us suppose that Alice needs to convey the results of two matches (A vs B and C vs D)

(mutually exclusive events) to Bob using classical channel only. It can be shown easily that

she would require at least two classical bits. Quantum Dense coding achieves the same task

using 1 qubit. The resources used in this protocol include an entangled pair and a quantum

channel.

Let them share an entangled pair, say |φ+〉. Now after the matches are over, Alice depending

on the results she applies unitary operations on her qubit as follows:

9

Match Results Operators Entangled State after operation

A and C wins I |φ+〉

A and D wins σz |φ−〉

B and C wins σx |ψ+〉

B and D wins σzσx |ψ−〉

Now, after unitary transformation she sends her qubit to Bob via a quantum channel. The

mapping from match results to the four states is pre-decided and known to both of them. Alice

has transformed |φ+〉 to one of the four states, which are orthogonal to one another, so Bob

performs a measurement in the bell basis and would be able to retrieve the results of both the

matches using the mapping. It must be noted that had the states not been orthogonal they

could not have been distinguished reliably (No Cloning Theorem).

The protocol is quite intriguing as it achieves the same task using one qubit instead of two

classical bits and hence has the name Superdense Coding.

2.7 Qauntum Cryptography (overview)

Cryptography involves transferring information between sender and receiver through a public

(unsecure) channel in the presence of eavesdropper. Various classical algorithms exist to make

this task possible. However the loophole in all classical algorithms is that they rely on compu-

tational hardness of some problems. For example, RSA relies on the NP-hardness of Factoring

problem. However, Quantum Key Distribution (QKD) does not rely on the computational

hardness of any problem. Famous QKD protocols include BB84, B92, E91 and similar vari-

ants. It is to be noted that these protocols also take into consideration certain assumptions are

not completely free of attacks but are better than classical key distribution protocols since they

10

use inherent indeterminacy of Quantum Mechanics rather than the computational hardness.

BB84 protocol

In the first phase, Alice communicates to Bob over a quantum channel. Alice begins by

choosing a random string of bits and for each bit, Alice randomly chooses a basis, rectilinear

or diagonal, by which to encode the bit. She transmits a photon for each bit with the corre-

sponding polarization, as just described, to Bob. For every photon Bob receives, he measures

the photon’s polarization by a randomly chosen basis. If, for a particular photon, Bob chose

the same basis as Alice, then in principle, Bob should measure the same polarization and thus

he can correctly infer the bit that Alice intended to send. If he chose the wrong basis, his

result, and thus the bit he reads, will be random. In the second phase, Bob notifies Alice over

any insecure channel what basis he used to measure each photon. Alice reports back to Bob

whether he chose the correct basis for each photon. At this point Alice and Bob discard the

bits corresponding to the photons which Bob measured with a different basis. Provided no

errors occurred or no one manipulated the photons, Bob and Alice now both have an identical

string of bits which is called a sifted key. Before they are finished however, Alice and Bob agree

upon a random subset of the bits to compare to ensure consistency. If the bits agree, they are

discarded and the remaining bits form the shared secret key. In the absence of noise or any

other measurement error, a disagreement in any of the bits compared would indicate the pres-

ence of an eavesdropper on the quantum channel. This is because the eavesdropper, Eve, were

attempting to determine the key, she would have no choice but to measure the photons sent

by Alice before sending them on to Bob. This is true because the no cloning theorem assures

that she cannot replicate a particle of unknown state . Since Eve will not know what bases

Alice used to encoded the bit until after Alice and Bob discuss their measurements, Eve will be

forced to guess. If she measures on the incorrect bases, the Heisenberg Uncertainty Principle

11

ensures that the information encoded on the other bases is now lost. Thus when the photon

reaches Bob, his measurement will now be random and he will read a bit incorrectly 50% of

the time. Given that Eve will choose the measurement basis incorrectly on average 50% of the

time, 25% of Bob’s measured bits will differ from Alice. If Eve has eavesdropped on all the bits

then after n bit comparisons by Alice and Bob, they will reduce the probability that Eve will

go undetected to 3
4

n
. The chance that an eavesdropper learned the secret is thus negligible if

a sufficiently long sequence of the bits are compared. One of the major attacks possible in the

BB84 protocol is the photon number splitting attack. In practice implementations use laser

pulses attenuated to a very low level to send the quantum states. If the pulse contains more

than one photon, then Eve can split off the extra photons and transmit the remaining single

photon to Bob. This is the basis of the photon number splitting attack. This is resolved in

the Decoy State Quantum Key Distribution.

12

3 Quantum Foundation

[[TODO]]

13

4 Quantum Computation

Quantum Computation is the application of quantum mechanical properties of a system to

processing tasks. This can be done by constructing quantum circuits, composed of a sequence

of gates, quantum states (quantum registers), etc. A few examples of basic circuits using Qiskit

have been given below.

4.1 Basics of Quantum Computing using Qiskit

14

Basic gates, Measurement, Teleportation and Adder

December 4, 2019

1 Qiskit practice
1.1 1. Basic Gates and stuff

[1]: import numpy as np
from qiskit import *

numQbits = 3

[16]: circuit = QuantumCircuit(numQbits)
circuit.h(0)
circuit.cx(0, 1)
circuit.cx(0, 2)

[16]: <qiskit.circuit.instructionset.InstructionSet at 0x7f60b744bac8>

[17]: circuit.draw(output='mpl')

[17]:

1

15

1.1.1 Statevector simulator

[18]: backend = Aer.get_backend('statevector_simulator')
job = execute(circuit, backend)
result = job.result()
outputstate = result.get_statevector(circuit, decimals=3)
print(outputstate)
visualization.plot_state_city(outputstate)

[0.707+0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j
0.707+0.j]

[18]:

1.1.2 Unitary Simulator

[19]: backend = Aer.get_backend('unitary_simulator')
job = execute(circuit, backend)
result = job.result()
print(result.get_unitary(circuit, decimals=3))

[[0.707+0.j 0.707+0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j
0. +0.j 0. +0.j]

[0. +0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j
0.707+0.j -0.707+0.j]

[0. +0.j 0. +0.j 0.707+0.j 0.707+0.j 0. +0.j 0. +0.j
0. +0.j 0. +0.j]

[0. +0.j 0. +0.j 0. +0.j 0. +0.j 0.707+0.j -0.707+0.j
0. +0.j 0. +0.j]

[0. +0.j 0. +0.j 0. +0.j 0. +0.j 0.707+0.j 0.707+0.j
0. +0.j 0. +0.j]

[0. +0.j 0. +0.j 0.707+0.j -0.707+0.j 0. +0.j 0. +0.j
0. +0.j 0. +0.j]

[0. +0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j
0.707+0.j 0.707+0.j]

[0.707+0.j -0.707+0.j 0. +0.j 0. +0.j 0. +0.j 0. +0.j
0. +0.j 0. +0.j]]

2

16

1.1.3 Measurement

[24]: meas = QuantumCircuit(3, 3)
meas.barrier()
meas.measure(range(3),range(3))
qc = circuit+meas
qc.draw(output='mpl')

[24]:

[9]: backend_sim = Aer.get_backend('qasm_simulator')
job_sim = execute(qc, backend_sim, shots=1024)
result_sim = job_sim.result()
counts = result_sim.get_counts(qc)
print(counts)

{'000': 507, '111': 517}

1.2 2. Teleportation
1. Resource Generation and circuit

[10]: def apply_secret_unitary(secret_unitary, qubit, quantum_circuit, dagger):
functionmap = {

'x':quantum_circuit.x,
'y':quantum_circuit.y,
'z':quantum_circuit.z,
'h':quantum_circuit.h,
't':quantum_circuit.t,

}
if dagger:

functionmap['t'] = quantum_circuit.tdg
[functionmap[unitary](qubit) for unitary in secret_unitary]

3

17

else:
[functionmap[unitary](qubit) for unitary in secret_unitary[::-1]]

qr = QuantumRegister(3) # qr1: To be teleported. qr2: First entangled qubit.␣
↪→qr3: Second entangled qubit.

cr = ClassicalRegister(3)
qc = QuantumCircuit(qr, cr)
secret_unitary = 'z'

apply_secret_unitary(secret_unitary, qr[0], qc, dagger = 0)
qc.barrier()
qc.h(qr[1])
qc.cx(qr[1], qr[2])
qc.barrier()
Resource generation done, one entangled pair shared between Alice and Bob.
qc.cx(qr[0], qr[1])
qc.h(qr[0])
qc.measure(qr[0], cr[0])
qc.measure(qr[1], cr[1])
qc.cx(qr[1], qr[2])
qc.cz(qr[0], qr[2])
qc.barrier()
apply_secret_unitary(secret_unitary, qr[2], qc, dagger=1)
qc.measure(qr[2], cr[2])
qc.draw(output='mpl')

[10]:

2. Simulating and testing
[12]: backend = Aer.get_backend('qasm_simulator')

job_sim = execute(qc, backend, shots=2048)
sim_result = job_sim.result()
print(sim_result)
measurement_result = sim_result.get_counts(qc)
print(measurement_result)
visualization.plot_histogram(measurement_result)

4

18

{'011': 535, '010': 523, '000': 492, '001': 498}
[12]:

1.3 3. 1-Bit Adder Circuit
[27]: numQBits = 4 #1 == A, 2 == B, 3 == C(i+1), output in B

qr = QuantumRegister(numQBits)
cr = ClassicalRegister(2)
circuit = QuantumCircuit(qr, cr)

Initialization
'''Initial values of the registers are 0. Applying cx will flip the registers.
Hence, by applying cx as required, we can initialize the circuit to a desired␣
↪→input'''

circuit.x(qr[0]) # 0 == carry
circuit.x(qr[1]) # 1 == A
circuit.x(qr[2]) # 2 == B

Carry
circuit.ccx(qr[1], qr[2], qr[3])
circuit.cx(qr[1], qr[2])
circuit.ccx(qr[0], qr[2], qr[3])
circuit.barrier()

5

19

Sum
circuit.cx(qr[0], qr[2])
circuit.barrier()

circuit.measure(qr[2], cr[0]) # Output
circuit.measure(qr[3], cr[1]) # Carry

circuit.draw(output='mpl')

[27]:

[28]: backend = Aer.get_backend('qasm_simulator')
job_sim = execute(circuit, backend, shots=1)
sim_result = job_sim.result()
measurement_result = sim_result.get_counts(circuit)
print(list(measurement_result.keys())[0])
print(measurement_result)

10

1.4 4. n-Bit Adder
[76]: def oneBitAdder(A, B, Cin):

qr = QuantumRegister(4)
cr = ClassicalRegister(2)
circuit1 = QuantumCircuit(qr, cr)

circuit1.initialize([1, 0], qr[0])
circuit1.initialize([1, 0], qr[1])
circuit1.initialize([1, 0], qr[2])
circuit1.initialize([1, 0], qr[3])

6

20

if int(A):
circuit1.x(qr[1])

if int(B):
circuit1.x(qr[2])

if int(Cin):
circuit1.x(qr[0])

Carry
circuit1.ccx(qr[1], qr[2], qr[3])
circuit1.cx(qr[1], qr[2])
circuit1.ccx(qr[0], qr[2], qr[3])
circuit1.barrier()

Sum
circuit1.cx(qr[0], qr[2])
circuit1.barrier()

circuit1.measure(qr[2], cr[0]) # Output
circuit1.measure(qr[3], cr[1]) # Carry

print(circuit1)

backend = Aer.get_backend('qasm_simulator')
job_sim = execute(circuit1, backend, shots=1)
sim_result = job_sim.result()
measurement_result = sim_result.get_counts(circuit1)
ret = list(measurement_result.keys())[0]
return ret[1], ret[0]

a = '11011'
b = '11001'
cin = 0
idx = len(a) - 1
sum_ = ''
while idx >= 0:
print(a[idx], b[idx], cin)

s, cin = oneBitAdder(a[idx], b[idx], cin)
print(s, cin)

sum_ += s
idx -= 1

sum_ += cin
print(sum_[::-1])

110100

[]:

7

21

5 Quantum Algorithms

A quantum algorithm is an algorithm which runs on a realistic model of quantum computation,

the most commonly used model being the quantum circuit model of computation (as depicted

earlier.) A classical algorithm is a finite sequence of instructions, or a step-by-step procedure

for solving a problem, where each step or instruction can be performed on a classical computer.

Similarly, a quantum algorithm is a step-by-step procedure for solving a problem (which can

be either classical or quantum), where each of the steps can be performed on a quantum com-

puter. Although all classical algorithms can also be performed on a quantum computer, the

term quantum algorithm is usually used for those algorithms which seem inherently quan-

tum, or use some essential feature of quantum computation such as quantum superposition

or quantum entanglement. Problems which are undecidable using classical computers remain

undecidable using quantum computers.

Two concepts need to be understood and differentiated here:

Quantum supremacy is the goal of demonstrating that a programmable quantum device

can solve a problem that classical computers practically cannot.

Quantum advantage (a weaker goal) is the demonstration that a quantum device can solve

a problem merely faster than classical computers.

Following are some examples of quantum algorithms:

• Deutsch-Jozsa algorithm

• Bernstein-Vazirani algorithm

22

• Simon’s algorithm

• Quantum Phase estimation algorithm

• Grover’s Search

• Shor’s algorithm

• HHL algorithm

Here, I will explain the Deutsch-Jozsa algorithm, and a few in the next section of Quantum

Machine Learning.

5.1 Deutsch-Jozsa algorithm

Problem Statement: Given is an oracle that implements some function f : {0, 1}n → {0, 1},

and that the input function is either constant or balanced, determine if the function is constant

or balanced.

This problem was specifically designed to show separability between the complexity classes of

EQP and P.

Algorithm:

The circuit begins with n+1 qubit state

|ψ0〉 = |0〉n
⊗
|1〉.

Next, Hadamard gate is applied to get

|ψ1〉 = 1√
2n+1

∑2n−1

x=0
|x〉 (|0〉 − |1〉).

23

Figure 5.1: Quantum Circuit for Deutsch-Jozsa algorithm

The oracle Uf maps |x〉 |y〉 to |x〉 |y
⊕

f(x)〉. Applying this, we get

|ψ2〉 = 1√
2n+1

∑2n−1

x=0
|x〉 (|f(x)〉 − |1

⊕
f(x)〉)

Since f(x) ∈ {0, 1}, we get

|ψ2〉 = 1√
2n+1

∑2n−1

x=0
(−1)f(x) |x〉 (|0〉 − |1〉)

Now, ignore the last qubit. Applying Hadamard gate again, we get

|ψ3〉 = 1
2n

∑2n−1

x=0
(−1)f(x)

[∑2n−1

y=0
(−1)x.y |y〉

]

|ψ3〉 = 1
2n

∑2n−1

y=0

[∑2n−1

x=0
(−1)f(x)+(x.y)

]
|y〉

where x.y = x0y0

⊕
x1y1

⊕
· · ·xn−1yn−1

24

Then, we measure the probability of getting |0〉
⊗
n, which is

∣∣∣ 1
2n

∑2n−1

x=0
(−1)f(x)

∣∣∣2 and gives

1 if f(x) is constant and 0 if it is balanced.

25

6 Quantum Machine Learning

Figure 6.1: Different approaches to Quantum Machine Learning

Quantum machine learning is an emerging interdisciplinary research area at the intersection

of quantum computing and machine learning. One such application is machine learning algo-

rithms for the analysis of classical data executed on a quantum computer (quantum-enhanced

machine learning). One prominent method in the NISQ (Noisy intermediate scale quantum)

age are hybrid methods that involve both classical and quantum processing, where computa-

tionally difficult subroutines are outsourced to a quantum device. These routines can be more

complex in nature and executed faster with the assistance of quantum devices. Additionally,

quantum algorithms can be used to analyze quantum states instead of classical data. Beyond

quantum computing, the term ”quantum machine learning” is often associated with classical

machine learning methods applied to data generated from quantum experiments (i.e. machine

learning of quantum systems), such as learning quantum phase transitions or creating new

26

quantum experiments. Quantum machine learning also extends to a branch of research that

explores methodological and structural similarities between certain physical systems and learn-

ing systems, in particular neural networks (i.e., the relationship between quantum systems and

neural networks.) Here, I will briefly explain the use of Parameterized quantum circuits as

machine learning models and Quantum Circuit Learning.

Learning is the process of iteratively updating the set of parameters in the model and

selecting the one attaining low loss.

6.1 Parameterized quantum circuits as machine learn-

ing models

This was proposed in a recent paper (June 2019) published with the same name by Marcello

Benedetti, Erika Lloyd, and Stefan Sack. Here I will present a brief overview of the paper.

6.1.1 Introduction

Numerous advancements in quantum hardware and the theoretical foundations are being made

continuously, but a fully functioning quantum computer is still far away. Meanwhile, it is being

argued that noisy intermediate scale quantum (NISQ) devices may be useful commercially, as

well as scientifically. Parameterized quantum circuits provide a way to demonstrate quantum

supremacy in the NISQ era. The intuition here is that by outsourcing parts of the algorithm to

classical hardware, we significantly reduce the burden on the quantum hardware. In particular,

we reduce the required coherence time, circuit depth and number of qubits, hence allowing

NISQ hardware to focus entirely on the computationally hard part of the problem. This

hybrid algorithmic approach turned out to be successful in attacking scaled-down problems in

27

chemistry, combinatorial optimization and machine learning.

Figure 6.2: Hybrid Quantum Algorithms (Source: arXiv:1906.07682v)

The framework involves five major steps:

1. Data vector is sampled from the training set and transferred by classical preprocessing

(e.g. decorrelation or standardization functions)

2. The transformed data point is mapped to the parameters of an encoder circuit Uφ(x).

3. A variational circuit Uθ implements the core operation of the model.

4. This is followed by the estimation of a set of expectation values {〈Mk 〉x,θ }Kk=1

5. Then a post processing function f is applied to find the output values.

28

Here, steps 1 and 5 are performed using a classical computer, and the steps 2, 3 and 4 are

performed on a quantum processor.

29

7 Exploratory readings

This is mostly a dump for things I keep coming back to, stuff that I’m currently too noob to

understand yet.

7.1 MIP*=RE

Okay I can’t do this. Should probably give up quantum computing. The reason I picked this

up to read was not that I wanted to understand the result, but because I thought the exercise

would lead me to a lot of older work on complexity theory, which is something that I am

interested in. I did not read the whole paper, but only parts of it that I could understand.

At first sight, I was totally lost and understood practically nothing. But I read a lot of pre-

requisites and got back to the result, as well as the author’s blog post. I plan on getting back

to this after finishing Aaronson’s notes.

References:

• https://www.scottaaronson.com/blog/?p=4512

• Original Paper: https://arxiv.org/pdf/2001.04383.pdf

• https://quantumfrontiers.com/2020/03/01/the-shape-of-mip-re/

30

7.2 Google Supremacy Result

Reading about the google supremacy result let me to reading more about practical challenges

of quantum computing, noise, benchmarking quantum computers, as well as theoretical results

on the subject. I also read about Gil Kalai’s argument against quantum computing. In the

end, it was a fun exercise, and introduced me to a lot of things currently happening in the

field, but I did not get into any of these very deeply.

References:

• https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html

• https://www.scottaaronson.com/blog/?p=4317

• https://www.scottaaronson.com/blog/?p=4372

7.3 Quantum Game Theory

Quantum game theory was relatively easy to get into, since I knew a lot of prerequisites al-

ready. It basically deals with using quantum resource in the games defined by game theoretic

definitions. It can be superposition or entanglement between states of the players, or superpo-

sition of strategies used by the players. This is definitely something I want to explore further

in the future.

7.4 Solovay-Kitaev Theorem

Let G be a finite set of elements in SU(2) containing its own inverses (so g ∈ G =⇒ g−1 ∈ G).

Consider some ε > 0. Then there is a constant c such that for any U ∈ SU(2), there is

31

a sequence S of gates from G of length O(logc(1/ε)) such that ‖S − U‖ ≤ ε. That is, S

approximates U to operator norm error.

References:

• https://en.wikipedia.org/wiki/Solovay

• https://arxiv.org/pdf/quant-ph/0505030.pdf

• http://home.lu.lv/ sd20008/papers/essays/Solovay-Kitaev.pdf

• A Simple Proof that Toffoli and Hadamard are Quantum Universal

7.5 Spectral Theorem

Theorem. (Gelfand & Maurin)

Given an arbitrary set of commuting self-adjoint operators defined on the same dense subspace

of a Hilbert space, there is always an isomorphic Hilbert space in which these operators are

represented by multiplication with real-valued functions.

32

https://arxiv.org/pdf/quant-ph/0301040.pdf

8 Quantum Machine Learning (MOOC)

8.1 Basics

• Quantum theory as a generalisation of classical probability theory

• Classical and Transverse field ising model

• Qubits:

Logical and Physical. 1 logical qubit ≈ 100 to 1000 physical qubits

• Many body systeams:

Imagine a classical ising model representing electron spins. Consider the problem of

finding the lowest energy state. If number of particles N = 40, search space is 240 ≈

7 ∗ 1022 ≈ total bits stored in all of world’s computer. If N = 268, search space is

2268 ≈ 1080 ≈ number of particles in the known universe. Storing all states physically

impossible.

• Strategies to solve many-body problems:

– Analytical: Perturbation theory, neglecting interactions, etc. (approximation)

– Numerical Approaches (approximation)

– Truncation/compression: Reduce the size of hilbert space. e.g.: Density matrix

re-normalisation group

– Stochastic (MCMC)

33

8.2 Quantum Computing models

8.2.1 Gate model of quantum computing.

Software stack for quantum computers: Problem definition (Travelling salesman) →Quantum

Algorithm (QAOA) →Quantum Circuit (Gates and unitary operators) →Quantum Compiler

(Gate translation, if implemented gate not in hardware and Connectivity or interactions)

→Simulation or running on quantum processor.

Solovay-Kitaev theorem: Finite set of gates can approximate and unitary operation (effi-

ciently). Hence, gate model of quantum computing is Universal.

8.2.2 Adiabatic Quantum Computing:

Adiabatic theorem: A physical system remains in its instantaneous eigenstate if a given

perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the

rest of the Hamiltonian’s spectrum.

H0 =
∑
i

σxi

H1 = −
∑
<i,j>

jijσ
z
i σ

z
j −

∑
i

hiσ
z
i

H(t) = (1− t)H0 + tH1; t ∈ [0, 1]

Slow change ∼ Adiabatic pathway

Speed Limit: 1
min(∆(t))2

34

Adiabatic Quantum Computing Hamiltonian:

H = −
∑
<i,j>

jijσ
z
i σ

z
j −

∑
i

hiσ
z
i −

∑
<i,j>

gijσ
x
i σ

x
j

This is also universal.

35

	Preface(?!)
	Introduction
	Postulates
	Qubit
	Pauli Matrices
	No cloning theorem
	Quantum Teleportation
	Quantum Dense Coding
	Qauntum Cryptography (overview)

	Quantum Foundation
	Quantum Computation
	Basics of Quantum Computing using Qiskit

	Quantum Algorithms
	Deutsch-Jozsa algorithm

	Quantum Machine Learning
	Parameterized quantum circuits as machine learning models
	Introduction

	Exploratory readings
	MIP*=RE
	Google Supremacy Result
	Quantum Game Theory
	Solovay-Kitaev Theorem
	Spectral Theorem

	Quantum Machine Learning (MOOC)
	Basics
	Quantum Computing models
	Gate model of quantum computing.
	Adiabatic Quantum Computing:

