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Abstract

Linear regression is a widely used technique to fit linear models and finds widespread applications across different
areas of natural sciences, as well as field such as machine learning and statistics. In most real-world scenarios,
however, linear regression problems are often ill-posed or the underlying model suffers from overfitting, leading
to erroneous or trivial solutions. This is often dealt with by adding extra constraints, known as regularization.
For instance, suppose that we are given N data points {(ai, bi)}Ni=1 where ∀i : ai ∈ Rd,∀i : bi ∈ R. The
assumption is that there is a vector x such that bi = xTai+ ei, where ei is a random variable (noise) with mean
0. Suppose A is the data matrix of dimension N × d, such that its ith row is the vector ai and b ∈ RN such
that b = (b1, · · · , bN )T . Adding an ℓ2-regularization, the objective is to obtain x that minimizes

∥Ax− b∥22 + λ∥Lx∥22 (0.0.1)

where L is an appropriately chosen penalty matrix (or regularization matrix) of dimension N×d and λ > 0 is the
regularization parameter, an appropriately chosen constant. This regularization technique is known as general
ℓ2 -regularization in the literature. It is a generalization of the well known ridge regression which corresponds
to the case when L is the identity matrix. The closed-form solution of the general ℓ2-regularized ordinary least
squares problem is given by

x =
(
ATA+ λLTL

)−1
AT b. (0.0.2)

A straightforward observation is that even when ATA is singular, regularization ensures that the condition
number (ratio of the maximum and the minimum singular values) of the resulting matrix is finite and therefore
ATA + λLTL is invertible. Another observation is that when the condition number of A is arbitrarily large
(the minimum singular value of A is arbitrarily small), the condition number of the matrix to be inverted in
Equation 0.0.2 can be tamed significantly. Since the complexity of most quantum algorithms for the quantum
versions of these problems depend the condition number, the complexity reduces significantly. These models can
be generalized to situations where the data points are weighted or correlated which incorporate more realistic
scenarios.

Quantum linear systems solvers are possibly among the most studied quantum algorithms. In this work we
develop the first quantum algorithms for ordinary, weighted and generalized least squares with generalized ℓ2-
regularization. We assume access to (approximate) block-encodings of the relevant matrices and develop robust
versions of quantum singular value transformations to implement linear transformations of these matrices. Our
goal is to output a quantum state that is δ-close to |x⟩, the state encoding the solution to the underlying
regularized least squares problem. Owing to the generality of the block-encoding framework, our algorithms are
applicable to a variety of input models. In order to obtain our results, we work with approximate block-encodings
of matrices and apply robust quantum singular value transformations (QSVT) to them. For most quantum
linear algebra applications using QSVT, access to perfect block-encoding is assumed, and the robustness of such
algorithms is left out.

We develop a space-efficient variable time amplitude amplification (VTAA) procedure, which we then use in
a variable-time matrix inversion algorithm. A crucial requirement for variable time matrix inversion algorithm
is the application of the inversion procedure to the portion of the input state that is spanned by singular values
larger than a certain threshold. In order to achieve this, prior results have made use of Gapped Phase Estimation
(GPE), which is a simple variant of the standard phase estimation procedure. However, GPE requires extra
registers that store the estimates of the phases, which are never used in the variable-time algorithm. In this
work, instead of GPE, we make use of a robust version of quantum eigenvalue discrimination (QEVD) using
QSVT, which decides whether the eigenvalue of a matrix is above or below a certain threshold without storing
the eigenvalue estimates. Given the block-encoding of a matrix A with condition number κ, this procedure
for implementing A+ reduces the number of additional qubits required for our variable time by a factor of
O(log2(κ/δ)) as compared to prior results, where δ is the desired accuracy. We show that in order to implement
A+, the precision required in the block-encoding of A is determined in turn by the precision in the QEVD
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procedure. Consequently, this improves both variable-time amplitude amplification and quantum linear systems
algorithm: we achieve optimal complexity (linear dependence in the condition number and polylogarithmic
dependence on inverse-accuracy) using far fewer ancilla qubits. We then use this to develop our algorithms
for ordinary, weighted and generalized least squares with general ℓ2-regularization. The primitives we have
developed, and our approach to designing the algorithms might be of independent interest to the community,
specially in the domain of quantum machine learning (QML) and quantum algorithms for natural sciences,
where such quantum linear algebra subroutines (QLAS) are frequently used.
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Chapter 1

Overview and Motivation

1.1 Motivation
Physics and computation have been closely related since the conception of a computers. Computers of some
form have always been the tools that we use to assist the production of knowledge [1], giving rise to new
discoveries in natural sciences by simulating the physics of the universe, while on the other hand advances in
physics have made engineering of even more powerful computers possible, producing as a byproduct an insanely
high number of dressed up golden retrievers and arrogant cat memes.

Recent connections made in the field of black hole information paradox and holographic duality have high-
lighted the importance of theoretical computer science in theoretical physics [2]. In fact, what is and isn’t
computable depends on the underlying physics of the universe we live in [1]. Therefore at the height of the
quantum revolution in physical sciences, it was natural to look at what power a programmable, quantum me-
chanical device would give us. The vastness of the Hilbert space and the superposition principle are obvious
advantages that the quantum theory would bring to the table, and this has been provably demonstrated when
we care only about global properties i of the underlying functions to be computed (e.g. Deutsch Jozsa algorithm,
Shor’s algorithm). But despite immense focus on the subject, a provable advantage to more practical problems
remains to be seen.

An important class of problems that shows up frequently in natural sciences is that of finding solutions
to linear systems. Given a matrix A ∈ Rm×n and a vector b ∈ Rm, we have to find a vector x ∈ Rn such
that Ax = b, or find approximate solutions to the system, by minimizing a loss function in Ax, b, and some
additional constraints. These are the class of problems that will be focused upon in this work. There has been
extensive work done in this domain, some of which will be introduced and improved upon in this work. We
shall begin this chapter by informally introducing linear systems and regularization, followed by an overview of
some applications. Then we shall briefly state the results derived in this manuscript.

1.2 Introduction
The problem of fitting a theoretical model to a large set of experimental data appears across various fields
ranging from the natural sciences to machine learning and statistics [3]. Linear regression is one of the most
widely used procedures for achieving this. By assuming that, for the underlying model, there exists a linear
relationship between a dependent variable and one or more explanatory variables, linear regression constructs
the best linear fit to the series of data points. Usually, it does so while minimizing the sum of squared errors -
known as the least squares method.

In other words, suppose that we are given N data points {(ai, bi)}Ni=1 where ∀i : ai ∈ Rd,∀i : bi ∈ R. The
assumption is that there is a vector x such that bi = xTai+ ei, where ei is a random variable (noise) with mean
0. Suppose A is the data matrix of dimension N ×d, such that its ith row is the vector ai and b ∈ RN such that
b = (b1, · · · , bN )T . Then the procedure, known as ordinary least squares, obtains a vector x ∈ Rd that minimizes
the objective function ||Ax− b||22. This problem has a closed-form solution given by x = (ATA)−1AT b = A+b,
where A+ denotes the Moore-Penrose inverse of the matrix A. Thus computationally, finding the best fit by
linear regression reduces to finding the pseudo-inverse of a matrix that represents the data, a task that is
expensive for classical machines for large data sets. Classically two of the most widely used algorithms are

iGlobal properties are those that are true for the whole input space. For example, the property of a function being constant or
balanced (as considered in the Deutsch-Jozsa problem.)

1



CHAPTER 1. OVERVIEW AND MOTIVATION

steepest descent, and conjugate gradient descent. For a symmetric, positive-definite N × N matrix M with
condition number κ, these algorithms run in time O

(
nnz(M)κ log

(
1
ε

))
and O

(
nnz(M)

√
κ log

(
1
ε

))
respectively,

where nnz(M) is the number of non-zero entries in M , and ε is the multiplicative error, relative to the error in
the choice of the initial point [4].

In practice, however, least squares regression runs into problems such as overfitting. For instance, the solution
might fit most data points, even those corresponding to random noise. Furthermore, the linear regression
problem may also be ill-posed, for instance, when the number of variables exceeds the number of data points
rendering it impossible to fit the data. These issues come up frequently with linear regression models and
result in erroneous or trivial solutions. Furthermore, another frequent occurrence is that the data matrix A has
linearly dependent columns. In this scenario, the matrix ATA is not full rank and therefore is not invertible.

Regularization is a widely used technique to remedy these problems, not just for linear regression but for
inverse problems in general [5]. In the context of linear regression, broadly, this involves adding a penalty term
to the objective function, which constrains the solution of the regression problem. For instance, in the case of
ℓ2-regularization, the objective is to obtain x that minimizes

∥Ax− b∥22 + λ∥Lx∥22 (1.2.1)

where L is an appropriately chosen penalty matrix (or regularization matrix) of dimension N × d and λ > 0
is the regularization parameter, an appropriately chosen constant. This regularization technique is known as
general ℓ2 -regularization or Tikhonov regularization in the literature [6, 7, 8, 9, 10]. It is a generalization of
ridge regression which corresponds to the case when L is the identity matrix [11, 12, 13]. The closed-form
solution of the general ℓ2-regularized ordinary least squares problem is given by

x =
(
ATA+ λLTL

)−1
AT b. (1.2.2)

A straightforward observation is that even when ATA is singular, regularization ensures that the condition
number (ratio of the maximum and the minimum singular values) of the resulting matrix is finite and therefore
ATA+ λLTL is invertible.

In this work, we develop quantum algorithms for linear regression with general ℓ2-regularization. If the
optimal solution is x = (x1, · · · , xd)T , then our quantum algorithm outputs a quantum state that is δ-close to
|x⟩ =

∑d
j=1 xj |j⟩ /∥x∥, assuming access to the matrices A,L, and the quantum state |b⟩ via general quantum

input models.
In several practical scenarios, depending on the underlying theoretical model, generalizations of the ordinary

least squares (OLS) technique are more useful to fit the data. For instance, certain samples may be of more
importance (and therefore have more weight) than the others, in which case weighted least squares (WLS)
is preferred. Generalized least squares (GLS) is used when the underlying samples obtained are correlated.
These techniques also suffer from the issues commonplace with OLS, warranting the need for regularization
[10]. Consequently, we also design algorithms for quantum WLS with general ℓ2-regularization and quantum
GLS with general ℓ2-regularization.

1.3 Applications of Quantum Linear Algebra
Quantum Linear Systems Solvers are one of the most important quantum algorithmic primitives that find
applications for solving problems in natural sciences, statistics and machine learning. Here we briefly mention
some common applications of these algorithms.

1.3.1 Simulating Quantum Systems
Simulation of quantum systems was the original motivation behind the conception of quantum computers [14].
A quantum state belonging to a d-dimensional Hilbert space requires 2d−1 variables for a complete description,
exponential in the dimension. Any simulation of a quantum evolution would thus require manipulating proba-
bility amplitudes exponential in numbers in the dimension of the Hilbert space. This would allow us to compute
the complete description of the final state of the system. A quantum computer will be able to bypass this
requirement by encoding the description into a quantum state itself, thus exponentially reducing the compute
power required for the task since we would now need to perform quantum operations only on the d states (and
thus only d possible parallel operations). While this seems like a clear exponential advantage, the caveat is that
to extract the information out of the final quantum state, we would have to make a measurement. According to
the measurement postulate of quantum mechanics [15], the state would thus collapse to one of the eigenstates
of the system, thus possibly losing information (depending on the basis in which the measurement is made). We
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CHAPTER 1. OVERVIEW AND MOTIVATION

can only sample from the spectra of an observable according to the probability distribution corresponding to
the amplitudes of the final state of the system, but not get the complete description of the state. This limits the
possibilities, but when the task is to find certain global properties of the system, this can still be efficient. The
Deutsch-Jozsa algorithm is a good example of an algorithm that makes use of this phenomenon [16]. Despite
these limitations, there has been progress made towards this goal [17, 18, 19, 20].

1.3.2 Quantum Machine Learning
Machine learning is an important tool for finding patterns in data (samples from some probability distribution).
Quantum systems are known to produce samples that might be hard to sample from using classical algorithms.
The development of quantum algorithms gives the opportunity to use these techniques to train machine learning
models on quantum computers, which could allow for improvements in the training time (and other resources)
required, as well as performance [21]. A lot of problems while training ML models reduce to solving linear
systems.

Least squares fitting and data analysis is an important application of quantum linear systems algorithms
(QLSA). Wiebe et al. [22] used the HHL algorithm [23] to develop an algorithm that efficiently determines the
quality of least squares fit. This was followed by a plethora of work in quantum computing models such as
quantum principal component analysis [24] and quantum support vector machines [25]. There also has been
extensive work on quantum neural networks. The simplest model considers a Parameterized Quantum Circuit as
a machine learning model [26], which considers a quantum circuit with parameterized rotations, the parameters
to which are optimized by a classical computer based on the expectation value of certain measurements made
on the output qubits. Figure 1.1 from [26] is a schematic example of such a model.

Figure 1.1: Parameterized Quantum Circuit. The pre and post processing steps are performed on a classical
machine. The data vector x is fed to the quantum circuit via an encoder circuit Uϕ(x), which is parameterized
by the output of the preprocessing step ϕ(x). Then a variational circuit U(θ), parameterized by θ acts on the
state, followed by a measurement. A classical computer then takes the measurement samples and updates the

parameter θ for the next iteration over some objective which depends on the measurement outcomes.

1.3.3 Solving Linear Differential Equations
Mathematical descriptions of various physical systems are linear partial differential equations, in which the time
derivative depends linearly on spatial derivatives. Examples include Maxwell’s equation, the heat equation and
Stokes equation. Discretization of PDEs gives sparse ordinary differential equations of very high dimensions,
which can be converted to first order ODEs.

Berry [27] extended linear systems solvers to an algorithm for solving general inhomogeneous sparse linear
differential equations. For an equation of the form

ẋ(t) = A(t)x(t) + b(t), (1.3.1)

where A is an n × n sparse matrix, a classical algorithm must take time at least linear in n. On the other
hand, the proposed quantum algorithm takes time O(polylog (n))ii.

Similarly, Montanaro and Pallister [29] showed how to use the QLSA to solve finite element method problems
to achieve a polynomial quantum speedup, which can be used to find approximate solutions to various models
in physics and mathematics such as the Black-Scholes equation in mathematical finance and for solving a PDE

iiAs is the case with all such quantum algorithms, these prepare a quantum state with uniform amplitudes proportional to those
of the desired vector, which is an important detail that should be highlighted. Refer to [28]
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where the dimension grows with the number of bodies in many-body dynamics. This method discretizes the
parameter space and finds an approximate solution by solving a large system of linear equations.

1.4 Prior Work
Earlier, quantum algorithms for (unregularized) linear regression was first developed by Wiebe et al. [22],
wherein the authors made use of the HHL algorithm (section 4.1) for solving a linear system of equations [23].
Their algorithm assumes query access to a sparse matrix A (sparse-access-model) and to a procedure to prepare
|b⟩ =

∑
i bi |i⟩. They first prepare a quantum state proportional to AT |b⟩, and then use the HHL algorithm to

apply the operator (ATA)−1 to it. Overall the algorithm runs in a time scaling as κ6A (the condition number of A)
and inverse polynomial in the accuracy δ. Subsequent results have considered the problem of obtaining classical
outputs for linear regression. For instance, in Ref. [30], A+ is directly applied to the quantum state |b⟩, followed
by amplitude estimation to obtain the entries of x. On the other hand, Ref. [31] used the techniques of quantum
principal component analysis in [24] to predict a new data point for the regression problem. These algorithms
also work in the sparse access model and run in a time that scales as poly (κ, 1/δ). Kerenidis and Prakash [32]
provided a quantum algorithm for the WLS problem wherein they used a classical data structure to store the
entries of A and W . Furthermore, they assumed QRAM access to this data structure [33, 34] that would allow
the preparation of quantum states proportional to the entries of A and W efficiently. They showed that in this
input model (quantum data structure model), an iterative quantum linear systems algorithm can prepare |x⟩ in
time Õ(µκ3/δ), where κ is the condition number of the matrix AT

√
W while µ =

∥∥∥√WA
∥∥∥
F
. Chakraborty et

al. [35] applied the framework of block-encoding along with (controlled) Hamiltonian simulation of Low and
Chuang [36] to design improved quantum algorithms for solving linear systems. Quantum algorithms developed
in the block-encoding framework are applicable to a wide variety of input models, including the sparse access
model and the quantum data structure model of [32]. They applied their quantum linear systems solver to
develop quantum algorithms for quantum weighted least squares and generalized least squares. Their quantum
algorithm for WLS has a complexity that is in Õ (ακpolylog(Nd/δ)), where α = s, the sparsity of the matrix
AT

√
W in the sparse access model while α =

∥∥∥√WA
∥∥∥
F
, for the quantum data structure input model. For

GLS, their quantum algorithm outputs |x⟩ in cost Õ (κAκΩ(αA + αΩκΩ)polylog(1/δ)), where κA and κΩ are
the condition numbers of A and Ω respectively while αA and αΩ are parameters that depend on how the matrices
A and Ω are accessed in the underlying input model.

Yu et al. [37] developed a quantum algorithm for ridge regression in the sparse access model using the LMR
scheme [24] for Hamiltonian simulation and quantum phase estimation, which they then used to determine the
optimal value of the parameter λ. Their algorithm to output |x⟩ has a cubic dependence on both κ and 1/δ.
They use this as a subroutine to determine a good value of λ. A few other works [38, 39] have considered the
quantum ridge regression problem in the sparse access model, all of which can be implemented with poly(κ, 1/δ)
cost.

Recently, Chen and de Wolf designed quantum algorithms for lasso (ℓ1-regularization) and ridge regressions
from the perspective of empirical loss minimization [40]. For both lasso and ridge, their quantum algorithms
output a classical vector x̃ whose loss (mean squared error) is δ-close to the minimum achievable loss. In this
context, they prove a quantum lower bound of Ω(d/δ) for ridge regression which indicates that in their setting,
the dependence on d cannot be improved on a quantum computer (the classical lower bound is also linear in
d and there exists a matching upper bound). Note that x̃ is not necessarily close to the optimal solution x of
the corresponding least squares problem, even though their respective loss values are. Moreover, their result
(of outputting a classical vector x̃) is incomparable to our objective of obtaining a quantum state encoding the
optimal solution to the regularized regression problem.

Finally, Gilyén et al. obtained a “dequantized” classical algorithm for ridge regression assuming norm
squared access to input data similar to the quantum data structure input model [41]. Furthermore, similar
to the quantum setting where the output is the quantum state |x⟩ =

∑
j xj |j⟩ /∥x∥ instead of x itself, their

algorithm obtains samples from the distribution x2j/∥x∥
2. For the regularization parameter λ = O (∥A∥∥A∥F ),

the running time of their algorithm is in Õ
(
κ12r3A/δ

4
)
, where rA is the rank of A. Their result (and several prior

results) does not have a polynomial dependence on the dimension of A and therefore rules out the possibility
of generic exponential quantum speedup (except in δ) in the quantum data structure input model.
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1.5 Research Focus and Contributions
In this work, we design the first quantum algorithms for OLS, WLS, and GLS with general ℓ2-regularization.
We assume that the relevant matrices are provided as input in the block-encoding model and use the Quantum
Singular Value Transformation (QSVT) framework introduced by Gilyén et al [42]. The block-encoding model
assumes that an operator (close to) A/α is encoded in the top-left block of some unitary UA. The parameter α
takes specific values depending on the underlying input model. On the other hand, QSVT allows us to implement
nearly arbitrary polynomial transformations to a block of a unitary matrix using a series of parameterized,
projector-controlled rotations (quantum signal processing [43]). Our results utilize both these frameworks.

More precisely, given approximate block-encodings of the data matrix A and the regularizing matrix L, and
a unitary procedure to prepare the state |b⟩, our quantum algorithms output a quantum state that is δ-close to
|x⟩, the quantum state proportional to the ℓ2-regularized ordinary least squares (or weighted least squares or
generalized least squares problem). We briefly summarize the query complexities of our results in Table 1.1.

For the OLS problem with general ℓ2-regularization (chapter 5, Theorem 5.1.2), we design a quantum
algorithm which given an (αA, aA, εA)-block-encoding of A (implemented in cost TA), an (αL, aL, εL)-block-
encoding of L (implemented in cost TL), a parameter λ > 0, and a procedure to prepare |b⟩ (in cost Tb), outputs
a quantum state which is δ-close to |x⟩. The algorithm has a cost

O

(
κ log κ

((
αA +

√
λαL

∥A∥+
√
λ∥L∥

)
log
(κ
δ

)
(TA + TL) + Tb

))

where κ can be thought of as a modified condition number, related to the effective condition numbers of A and
L. When L is a good regularizer, this is given by the expression

κ = κL

(
1 +

∥A∥√
λ∥L∥

)
,

Notice that κ is independent of κA, the condition number of the data matrix A, which underscores the advantage
of regularization. The parameters αA and αL take specific values depending on the underlying input model.
For the sparse access input model, αA = sA and αL = sL, the respective scarcities of the matrices A and L. On
the other hand for the quantum data structure input model, αA = ∥A∥F and αL = ∥L∥F . Consequently, the
complexity of Quantum Ridge Regression can be obtained by substituting L = I in the above complexity as

O
(
log κ

(
αA√
λ
log
(κ
δ

)
TA + κTb

))
where κ = 1+ ∥A∥/

√
λ, by noting that the block-encoding of I is trivial while the norm and condition number

of the identity matrix is one. For this problem of quantum ridge regression, our quantum algorithms are
substantially better than prior results [38, 37, 39], exhibiting a polynomial improvement in κ and an exponential
improvement in 1/δ.

For the ℓ2-regularized GLS problem (chapter 5, Theorem 5.2.7), we design a quantum algorithm that along
with approximate block-encodings of A and L, takes as input an (αΩ, aΩ, εΩ)-lock-encoding of the matrix Ω
(implementable at a cost of TΩ) to output a state δ-close to |x⟩ at a cost of

O
(
κ
√
κΩ log κ

((
αA

∥A∥
TA +

αL

∥L∥
TL +

αΩκΩ
∥Ω∥

TΩ

)
log3

(
κκΩ∥A∥∥L∥

δ∥Ω∥

)
+ Tb

))
In the above complexity, when L is a good regularizer, the modified condition number κ is defined as

κ = κL

(
1 +

√
κΩ∥A∥√
λ∥Ω∥∥L∥

)

The WLS problem is a particular case of GLS, wherein the matrix Ω is diagonal. However, we show that
better complexities for the ℓ2-regularized WLS problem can be obtained if we assume QRAM access to the
diagonal entries of W (chapter 5, Theorem 5.2.4 and Theorem 5.2.5).

Table 1.1 summarizes the complexities of our algorithms for quantum linear regression with general ℓ2-
regularization. For better exposition, here we assume that ∥A∥, ∥L∥, ∥Ω∥ and λ = Θ(1). For the general
expression of the complexities, we refer the readers to chapter 5.
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Problem Unregularized ℓ2-Regularized

Quantum OLS Õ (αAκA log (1/δ)) Õ ((αA + αL)κL log (1/δ))

Quantum GLS Õ
(
(αA + αΩκΩ)κA

√
κΩ log3 (1/δ)

)
Õ
(
(αA + αL + αΩκΩ)κL

√
κΩ log3 (1/δ)

)
Table 1.1: Complexity of quantum linear regression algorithms with and without general ℓ2-regularization. All

of these algorithms require only Θ(log κ) additional qubits.

In order to derive our results, we take advantage of the ability to efficiently perform arithmetic operations
on block-encoded matrices, as outlined in section 3.2. Along with this, we use QSVT to perform linear algebraic
operations on block-encoded matrices. To this end, adapt the results in Refs. [42, 44] to our setting. One of
our contributions is that we work with robust versions of many of these algorithms. In prior work, QSVT is
often applied to block-encoded matrices, assuming perfect block-encoding. For the quantum algorithms in this
paper, we rigorously obtain the precision ε required to obtain a δ-approximation of the desired output state.

For instance, a key ingredient of our algorithm for regularized least squares is to make use of QSVT to
obtain A+, given an ε-approximate block-encoding of A. In order to obtain a (near) optimal dependence on the
condition number of A by applying variable-time amplitude amplification (VTAA) [45], we recast the standard
QSVT algorithm as a variable stopping-time quantum algorithm. Using QSVT instead of controlled Hamiltonian
simulation ensures that the variable-time quantum procedure to prepare A+ |x⟩ has a slightly better running
time (by a log factor) and considerably fewer additional qubits than Refs. [46, 35].

Furthermore, for the variable time matrix inversion algorithm, a crucial requirement is the application of
the inversion procedure to the portion of the input state that is spanned by singular values larger than a certain
threshold. In order to achieve this, prior results have made use of Gapped Phase Estimation (GPE), which is a
simple variant of the standard phase estimation procedure [45, 46, 35]. However, GPE requires extra registers
that store the estimates of the phases, which are never used in the variable-time algorithm. In this work, instead
of GPE, we make use of a robust version of quantum eigenvalue discrimination (QEVD) using QSVT, which
decides whether the eigenvalue of a matrix is above or below a certain threshold without storing the eigenvalue
estimates [42, 44]. This further reduces the number of additional qubits required for our variable time by a
factor of O(log2(κ/δ)) as compared to prior results [46, 35]. We show that in order to implement A+, the
precision required in the block-encoding of A is determined in turn by the precision in the QEVD procedure.
Consequently, this also implies that in our framework, quantum algorithms for (unregularized) least squares
(which are special cases of our result) have better time and space complexities than those of Ref. [35].

1.6 Outline of the Thesis
In chapter 2 we discuss the prerequisites needed to build our algorithms. We begin by discussing the two major
models of quantum computers, namely circuit model and adiabatic model (section 2.3). In section 2.1 we describe
what ordinary, weighted and generalized least squares are, and introduce regularization of linear systems. Then
in section 2.4 we describe the block-encoding input model, which is how we assume access to the inputs to
our algorithms. We also describe the commonly used QROM and Sparse Access Input models. In section 2.5
we describe quantum singular value transformation, which we use to develop all our algorithms. Finally,
in section 2.6 we describe the technique of variable time amplitude amplification, an amplitude amplification
technique which we improve and use in our algorithms to boost success probability without a significant overhead.

In chapter 3 we build various algorithmic primitives that we will then use in our algorithms as subroutines.
In chapter 4 we first describe the original HHL algorithm. Then we describe an adiabatic quantum algorithm
for solving linear systems. We then build our own linear systems solver using QSVT and our improved VTAA
technique to achieve optimal complexity. We use the algorithmic primitives and our linear systems solver to
build quantum algorithms for regularized versions of OLS, WLS and GLS problems in chapter 5. We conclude
in chapter 6 with some open problems and discussion.
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1.7 Notation
In this section we lay down the notation used throughout in this thesis. For a matrix A ∈ RN×d, Ai,. denotes
the ith row of A, and ∥Ai,·∥ denotes the vector norm of AT

i,.. sAr and sAc denote the row and column sparsity of
the matrix, which is the maximum number of non-zero entries in any row and any column respectively.

When talking about quantum input models (section 2.4), the following notation is used. A(p) is defined as
A

(p)
i,j = (Ai,j)

p. Also, ∀q ∈ [0, 1] : sq(A) := maxi∈M ∥Ai,.∥qq and ∀p ∈ [0, 1] : µp(A) :=
√
s2p(A)s2(1−p)(AT ).

Singular Value Decomposition. The decomposition A = WΣV †, where W and V are unitary and Σ is
a diagonal matrix, represents the singular value decomposition (SVD) of A. All matrices can be decomposed in
this form. The diagonal entries of Σ, usually denoted by σ(A) = {σj}, is the multiset of all singular values of
A, which are real and non-negative. σmax and σmin denote the maximum and minimum singular values of A.
r(A) = rank(A) is the number of non-zero singular values of A. The columns of W, V (denoted by {|wj⟩} and
{|vj⟩}) are the left and right singular vectors of A. Thus A =

∑r
j σj |wj⟩ ⟨vj |. The singular vectors of A can

be computed as the positive square roots of the eigenvalues of ATA (which is Hermitian, and therefore has real
eigenvalues.)

Effective Condition Number. κA denotes (an upper bound on) the effective condition number of A, defined
as the ratio of the maximum and minimum non-zero singular values of A. Let σmax (A) be the largest singular
value of A, and σmin (A) be the smallest singular value of A. Additionally, let σ̃min (A) be the smallest non-zero
singular value of A. Then

κA ≥ σmax (A)

σ̃min (A)
=

√
λmax(A†A)

λ̃min(A†A)

If A is full-rank, then σ̃min (A) = σmin (A), and κA becomes the condition number of the matrix. In this
text – unless stated otherwise – we always refer to κA as (an upper bound on) effective condition number of a
matrix, and not the true condition number.

Norm. Unless otherwise specified, ∥A∥ denotes the spectral norm of A, while ∥A∥F denotes the Frobenius
norm of A, defined as

∥A∥ := max
x ̸=0

∥Ax∥
∥x∥

= σmax(A)

∥A∥F :=

√√√√ r∑
j=1

σ2
j

Unless otherwise specified, when A is assumed to be normalized, it is with respect to the spectral norm.

Big-O Notation. Let f and g be real valued functions in t defined on a subset of R unbounded from above.
Then we have the following notations to represent their asymptotic scaling with respect to each other.

f(t) = O(g(t)) ⇐⇒ ∃t0, C ∈ R : ∀t > t0 : |f(t)| ≤ C|g(t)|, (1.7.1)

which means that f does not scale faster than g. Similarly,

f(t) = Ω(g(t)) ⇐⇒ ∃t0, C ∈ R : ∀t > t0 : |f(t)| ≥ C|g(t)|, (1.7.2)

which means that f scales faster than g. And

f(t) = Θ(g(t)) ⇐⇒ f(t) = O(g(t)) ∧ g(t) = O(f(t)), (1.7.3)

which means that they scale similarly (asymptotically.)

Soft-O Complexity. Finally, we use f = Õ (g) to denote f = O(g · polylog(g)).

Controlled Unitaries. If U is a s-qubit unitary, then C-U is a (s+ 1)-qubit unitary defined by

C-U = |0⟩⟨0| ⊗ Is + |1⟩⟨1| ⊗ U

Throughout this text whenever we state that the time taken to implement a unitary UA is TA and the cost
of an algorithm is O(nTA), we imply that the algorithm makes n uses of the unitary UA. Thus, if the circuit
depth of UA is TA, the circuit depth of our algorithm is O(nTA).
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Chapter 2

Background

2.1 Linear Regression and Regularization
In this section we briefly describe the various kinds of linear models that we will deal with. We begin by
describing ordinary least squares (OLS), the simplest model. Expanding upon it, we introduce weighted and
correlated least squares, followed by an introduction to regularization of these models.

2.1.1 Ordinary Least Squares
Suppose we are given data points {(ai, bi)}Ni=1, where ∀i : ai ∈ Rd,∀i : bi ∈ R such that (ai, bi) ∼i.i.d D, i.e.
they are sampled i.i.d. from some unknown distribution D, assumed to be linear. We want to find a vector
x ∈ Rd such that the inner product xTaj is a good predictor for the target bj for some unknown aj . This can
be done by minimizing the total squared loss over the given data points,

LO :=
∑
j

(xTaj − bj)
2, (2.1.1)

leading to the ordinary least squares (OLS) optimization problem. The task then is to find x ∈ Rd that
minimizes ∥Ax− b∥22, where A is the N × d data matrix such that the ith row of A is ai, and the ith element of
the vector b is bi. Assuming that ATA is non-singular, one can show that Equation 2.1.1 is minimized at (proof
in section A.2)

x = (ATA)−1AT b = A+b, (2.1.2)

which corresponds to solving a linear system of equations.

2.1.2 Weighted Least Squares
Ordinary least squares method assumed that there is a constant variance in the errors of our sample (an
assumption called homoscedasticity). Suppose that the assumption is violated (heteroscedasticity). That is,
suppose that out of the samples present in the data, we have higher confidence in some of them than others. In
such a scenario, the ith observation can be assigned a weight wi ∈ R.

This leads to a generalization of the OLS problem to weighted least squares (WLS). In order to obtain the
best linear fit, the task is now to minimize the weighted version of the loss

LW :=
∑
j

wj(x
Taj − bj)

2. (2.1.3)

As before, assuming ATWA is non-singular, the above loss function has the following closed-form solution

x = (ATWA)−1ATWb, (2.1.4)

where W is a diagonal matrix with wi being the ith diagonal element.

8
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For example, if the model assumes that the underlying distribution is of the form b = Ax+ e, where e is a
multivariate, normally distributed vector with mean 0 and the variance-covariance matrix

σ2
1 0 . . . 0
0 σ2

2 . . . 0
...

...
. . .

...
0 0 . . . σ2

N

 ,

each observation can be weighted proportional to the inverse of the variance, wi ∝ 1
σ2
i
.

2.1.3 Generalized Least Squares
There can arise scenarios where there exists some correlation between any two samples. For generalized least
squares (GLS), the presumed correlations between pairs of samples are given in a symmetric, non-singular
covariance matrix Ω. This method then finds the best fit by minimizing the square of Mahalanobis lengthi of
the residual vector. The objective is thus to find the vector x that minimizes

LΩ :=
∑
i,j

(Ω−1)i,j(x
Tai − bi)(x

Taj − bj). (2.1.5)

The closed form solution for GLS is given by

x = (ATΩ−1A)−1ATΩ−1b. (2.1.6)

GLS corresponds to using OLS on a linearly transformed dataset. This can be easily observed by setting
Ω = KTK = KK. Such square-root decomposition is possible since Ω is assumed to be symmetric and
non-singular. Then,

LΩ = (b−Ax)
T
Ω−1 (b−Ax)

= (b−Ax)
T
K−1K−1 (b−Ax)

=
(
K−1(b−Ax)

)T (
K−1(b−Ax)

)
= (b′ −A′x)

T
(b′ −A′x)

= L′
O

where b′ := K−1b, A′ := K−1A are the transformed samples.
Note. In practice we seldom know what the correlations are. In that situation we use the residuals of

ordinary least squares to estimate the covariance matrix, a method known as feasible generalized least squares.
How this is approached exactly varies across fields, and typically involves some assumptions on the underlying
dataset.

2.1.4 Regularization of Linear Systems
As mentioned previously, in several practical scenarios, the linear regression problem may be ill-posed or suffer
from overfitting. Furthermore, the data may be such that some of the columns of the matrix A are linearly
dependent. This shrinks the rank of A, and consequently of the matrix ATA, rendering it singular and therefore
non-invertible. Recall that the closed-form solution of OLS exists only if ATA is non-singular, which is no longer
the case. Such scenarios arise even for WLS and GLS problems [10].

In such cases, one resorts to regularization to deal with them. Let L be the loss function to be minimized for
the underlying least squares problem (such as OLS, WLS, or GLS). Then general ℓ2-regularization (Tikhonov
regularization) involves an additional penalty term so that the objective now is to find the vector x ∈ Rd that
minimizes

L+ λ∥Lx∥22. (2.1.7)

Here λ, known as the regularization parameter, is a positive constant that controls the size of the vector x,
while L is known as the penalty matrix (or regularization matrix) that defines a (semi)norm on the solution

iSee https://en.wikipedia.org/wiki/Mahalanobis_distance for the definition.
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through which the size is measured. The solution to the Tikhonov regularization problem also has a closed-form
solution. For the OLS problem, when L = LO, we have that

x = (ATA+ λLTL)−1AT b. (2.1.8)

This can easily be seen as follows.

f(x) := ∥Ax− b∥2 + λ∥Lx∥2

= (Ax− b)T (Ax− b) + λ(Lx)T (Lx)

= xTATAx− xTAT b− bTAx+ bT b+ λxTLTLx

=⇒ ∇f(x) = 2ATAx− 2AT b+ 2λLTLx

Setting ∇f(x) = 0 gives us

2ATAx− 2AT b+ 2λLTLx = 0

=⇒ (ATA+ λLTL)x = AT b

=⇒ x = (ATA+ λLTL)−1AT b

It is worth noting that when L = I, the ℓ2-regularized OLS problem is known as ridge regression. For
the unregularized OLS problem, the singular values of A, σj are mapped to 1/σj . The penalty term due to
ℓ2-regularization, results in a shrinkage of the singular values. This implies that even in the scenario where A
has linearly dependent columns (some σj = 0) and (ATA)−1 does not exist, the inverse (ATA + λLTL)−1 is
well defined for λ > 0 and any positive-definite L. Throughout this article, we refer to such an L (which is
positive definite) as a good regularizer . The penalty matrix L allows for penalizing each regression parameter
differently and leads to joint shrinkage among the elements of x. It also determines the rate and direction of
shrinkage. In the special case of ridge regression, as L = I, the penalty shrinks each element of x equally along
the unit vectors ej . Also note that by definition, I is a good regularizer .

When L = Lw, the optimal solution is given by

x = (ATWA+ λLTL)−1ATWb (2.1.9)

This can be derived similar to the ordinary case. Similarly, when L = LΩ, we get

x = (ATΩ−1A+ λLTL)ATΩ−1b. (2.1.10)

We show that finding the optimal solution x in all the three cases above reduces to solving a linear system.
The quantum version of these algorithms output a quantum state that is ϵ-close |x⟩ =

∑
j xj |j⟩ /∥x∥.

Throughout this work, while designing our quantum algorithms, we shall assume access (via a block-
encoding) to the matrices A, W , Ω, and L and knowledge of the parameter λ. Classically, however, the
regularization matrix L and the optimal parameter λ are obtained via several heuristic techniques [7, 9, 10].

2.2 A Gentle Introduction to Quantum Mechanics
In this section we introduce the axioms of quantum mechanics. This is not meant to be a complete or concrete
introduction to the subject, for which we refer the reader to de Wolf [47]ii. This is meant to refresh the memory
of the reader, and gently lead them from the world of classical computers to that of quantum computing. We
begin by introducing how systems and its states are described in quantum mechanics, dictated by the first
axiom.

Axiom 1. (Quantum Systems and States). To every quantum system there is associated a separable
complex Hilbert space (H,+, ·, ⟨·|·⟩). The states of the system are all positive, trace-class linear maps ρ : H 7→ H
for which Trρ = 1.

The states of a system can be pure or mixed. A state ρ : H 7→ H is called a pure state if

∃ψ ∈ H : ∀α ∈ H : ρ(α) =
⟨ψ|α⟩
⟨ψ|ψ⟩

ψ. (2.2.1)

iiProf. Frederic Schuller’s Lectures on Quantum Theory on YouTube is another great source [48].
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Note that the above condition implies that to each pure state, we can associate a (non-unique) element
ϕ ∈ H. If a state is not a pure state, it is called a mixed state.

The fundamental unit of classical information is the bit, which can take the values 0 or 1. Similarly, the
fundamental unit of quantum information is the qubit, which is defined as a normalized vector |ψ⟩ in a two-
dimensional Hilbert space over C. Note that B := {|0⟩ , |1⟩} forms an orthonormal basis for this space (commonly
known as the computational basis).

A single qubit can be visualized as a point on the Bloch Sphere. To see this, note that any qubit can be
written as

|ψ⟩ = α |0⟩+ β |1⟩ , |α|2 + |β|2 = 1, α, β ∈ C. (2.2.2)

Figure 2.1: A qubit |ψ⟩ on a Bloch Sphere.

Note that a qubit can also be described using the elevation and azimuthal angles θ, ϕ as

|ψ⟩ = cos
θ

2
|0⟩+ exp(iϕ) sin

θ

2
|1⟩ . (2.2.3)

Next, we define what the observables of the quantum theory are.
Axiom 2. (Observables). The observables of a quantum system are the self-adjoint linear maps A :

DA 7→ H, where the subspace DA ⊆ H is dense in H, i.e.,

∀ψ ∈ H : ∀ε > 0 : ∃α ∈ DA : ∥α− ψ∥ < ε. (2.2.4)

Axiom 3. (Unitary Dynamics). In the time interval (t1, t2) ⊆ R in which no measurement occurs, the
state at time t1, denoted by ρ(t1), is related to the state at time t2, denoted by ρ(t2) by

ρ(t2) = U(t2 − t1)ρ(t1)U
−1(t2 − t1) (2.2.5)

with the unitary evolution operator defined as

U(t) := exp

(
− i

ℏ
Ht

)
, (2.2.6)

where H is the energy observable.
Measurement. Measurement operator Mj is a projection operator which projects the quantum state to

an eigenvalue of Mj . The post-measurement state is given by

ρj =
MjρM

†
j

Tr(MjρM
†
j )
, (2.2.7)

where the j measurement outcome occurs with the probability p(j) = Tr(MjρM
†
j ), and

∑
j M

†
jMj = I iii.

iiiThis definition of measurement would be sufficient for this work, but for more general and mathematically well defined notion
of measurements, refer to [47].
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2.3 Models of Quantum Computing
A programmable computer is a physical system based on some laws of physics, the initial state of which
is programmable by the user to represent the problem. The evolution of the system encodes the solution
procedure (an algorithm). Reading out the final state of the system (measurement) gives us the solution to the
problem. The most familiar model of quantum computation in terms of a universal set of gates was proposed
by Deutsch and Penrose [49] following the ideas of Paul Benioff and Richard Feynman for a quantum Turing
machine (Benioff [50], Benioff [51], Feynman [14]), for simulating quantum mechanics of physical systems using
a programmable quantum machine, to circumvent the problem with the exponential size of the Hilbert space.
Quantum computing is based on the idea of a computational problem being encoded as a quantum system,
evolving with a sequence of quantum gates (Unitaries, in accordance with the axiom of quantum mechanics),
similar to that encoded as a classical system evolving with a sequence of classical logic gates.

Adiabatic quantum computing is another such framework where the initial state of the system is a Hamil-
tonian whose ground state is easy to prepare, which evolves according to the adiabatic theorem to a final
Hamiltonian whose ground state encodes the solution to a computational problem. The adiabatic theorem
guarantees that the system will remain in the ground state of the instantaneous Hamiltonian, given that the
evolution takes place sufficiently slowly. The idea to encode the solution to a computational problem into the
ground state of a quantum Hamiltonian appeared in 1998 by Brooke et al. [52], in trying to solve classical
combinatorial optimization problem. This was called Quantum Annealing. This was introduced as a classical
‘quantum inspired’ algorithm, akin to Simulated Annealing (SA), and made use of simulated quantum fluc-
tuations and tunneling (similar to thermal fluctuations simulated by SA.) This section introduces these ideas
formally.

2.3.1 Circuit Model of Quantum Computation
Classical circuits. An n-bit classical Boolean circuit that computes a Boolean function f : {0, 1}n 7→ {0, 1}m
is defined as a finite, directed acyclic graph with AND, OR and NOT gates as internal vertices, n input vertices
(for the n input bits), and m output vertices. A circuit family is a set C = {Cn}n∈N, which contains a classical
Boolean circuit for each input size in N. If m = 1 and the circuit can output only 0 or 1, we say that the circuit
decides a language L = {x ∈ {0, 1}∗|f(x) = 1} ⊂ {0, 1}∗.

We can generalize this notion by replacing the classical gate set (AND, OR and NOT) by elementary
quantum gates, and allowing the inputs and outputs to be arbitrary quantum states. In line with the axioms of
quantum mechanics [15], these quantum gates are unitary operators. An elementary quantum gate is a unitary
transformation on 1, 2 or 3 qubits. Examples include the bit flip (X) gate, the phase flip (Z) gate, Hadamard
(H) gate, and the controlled-controlled-NOT (CCNOT) gate, also called the Toffoli gate. Circuit representation
of some quantum gates is depicted in Figure 2.2.

|0⟩ X |1⟩

(a) X Gate

|1⟩ Z − |1⟩

(b) Z Gate

|0⟩ H |+⟩

(c) Hadamard Gate

|1⟩ • |1⟩
|1⟩ |0⟩
(d) CNOT Gate

|1⟩ • |1⟩
|1⟩ • |1⟩
|1⟩ |0⟩
(e) Toffoli Gate

Figure 2.2: Quantum Gates

The Toffoli gate is universal for classical reversible computation.
Universal set of quantum gates. Let G be a finite set of quantum gates. G is universal if we can use

gates from G to approximate any unitary U on any number of qubits to any desired precision ϵ. For example,
the gate set {H,CNOT, Rπ/4} is universal.

A natural question that arises is that how many gates from the universal gate set would be required to
implement some unitary? The Solovay-Kitaev Theorem [15] answers this. It tells us that the number of
elementary gates needed to approximate an arbitrary unitary scales poly-logarithmically with the inverse of the
error.

Theorem 2.3.1 (Solovay-Kitaev Theorem). Let G be a finite set of elements in SU(d) containing its own
inverses (so g ∈ G =⇒ g−1 ∈ G). Consider some ε > 0. Then there is a constant c such that for any
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U ∈ SU(d), there is a sequence S of gates from G of length O(logc(1/ε)) such that ∥S − U∥ ≤ ε. That is, S
approximates U to operator norm error.

In this model of computation the time complexity of an algorithm is proportional to the number of elementary
gates that cannot be parallelised, i.e., the depth of the circuit is the critical complexity. Another important
measure of complexity, with respect to an oracle, is the number of uses of an oracle that the circuit makes. This
is the query complexity of algorithm with respect to the particular oracle.

2.3.2 Adiabatic Quantum Computing
A computation in this model is specified by two Hamiltonians Hi and Hf , such that the ground state of
Hi is easy to prepare, and the ground state of Hf represents the solution to our computational problem. The
Hamiltonians have to be local, i.e., they should only involve interactions between a constant number of particles.
This requirement is equivalent, in the circuit model, to only allowing gates acting on a constant number of qubits
at a time. The running time of the adiabatic computation is determined by the minimal spectral gap of all the
Hamiltonians connecting Hi and Hf , given by

H(s) = (1− s)Hi + sHf (2.3.1)

where s(t) : [0, tf ] → [0, 1] is called the schedule, and tf is the annealing time.
The following definition of adiabatic quantum computing has been taken from Aharonov et al. [53].

Definition 2.3.2 (k-local Hamiltonian). A Hamiltonian H acting on n particles is called k-local H can be
written as

∑
AHA, where A runs over all the subsets of k out of n particles, and HA acts trivially on all but

the particles in A.

That is, for each A, HA is a tensor product of a Hamiltonian on A, with identity on all the other particles.
Notice that for any constant k, a k-local Hamiltonian on n qubits can be described in 22knk = poly(n) space,
whereas describing an arbitrary Hamiltonian requires roughly 22n space.

Definition 2.3.3 (Adiabatic Quantum Computation). A k-local adiabatic computation AC(n, d,Hi, Hf , ϵ) is
specified by two k-local Hamiltonians, Hi and Hf acting on n d-dimensional particles, such that both Hamilto-
nians have unique ground states. The ground state of Hi is a tensor product state. The output is a state that is
ϵ-close in l2-norm to the ground state of Hf . Let tf be the smallest time such that the final state of an adiabatic
evolution according to Equation 2.3.1 for time tf is ϵ-close in l2-norm to the ground state of Hf . The running
time of the adiabatic algorithm is defined to be

cost := tf ·max
s
H(s) (2.3.2)

Notice that the definition of running time as defined in Equation 2.3.2 is invariant under the scaling of the
Hamiltonians by some overall factors.

Theorem 2.3.4 (Adiabatic Theorem). Let Hi and Hf be two Hamiltonians acting on a n-qubit quantum
systems, and consider the time dependent Hamiltonian as described in Equation 2.3.1. Assume that for all s,
H(s) has a unique ground state. Then for any fixed δ > 0, if

tf ≥ Ω

(
||Hf −Hi||1+δ

ϵδ mins∈[0,1]{∆2+δ(H(s))}

)
(2.3.3)

then the final state of an adiabatic evolution according to H(s) for time tf is ϵ-close in the l2-norm to the
ground state of Hf .

The matrix norm is the spectral norm. ∆(H(s)) is the spectral gap, defined as the minimum eigenvalue gap
between the ground state and the first excited state of the instantaneous Hamiltonian.

Aharonov et al. [53] showed that Adiabatic quantum computation with non-stoquastic Hamiltonians is
polynomially equivalent to the circuit model (‘Standard Quantum Computation’.)

Theorem 2.3.5 (Equivalence of Adiabatic and Circuit Model Quantum Computation). Given a quantum circuit
on n qubits with L two qubit gates implementing a unitary U , and an ϵ > 0, there exists a 5-local adiabatic
quantum computation AC(n+L, 2, Hi, Hf , ϵ), whose running time is poly(L, 1ϵ ) and whose output after tracing
out some ancilla qubits is ϵ-close in the trace distance to U |0⊗n⟩. Moreover, Hi and Hf can be computed by a
PTTM.
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The runtime for this algorithm is O(ϵ−(5+3δ)L5+2δ) for any fixed δ > 0.
Note that an adiabatic quantum algorithm can always be converted to a quantum circuit that can approx-

imate the adiabatic computation by discretizing the time dependent Hamiltonian for some finite sequence of
time steps and then using a standard Hamiltonian simulation algorithm to simulate the evolution.

Quantum annealing was proposed as one of the first adiabatic quantum algorithm, to solve combinatorial
optimization problems. These problems can be notoriously hard, due to the vastness of the search space.
The original proposal was a ‘simulated quantum annealing,’ in which the evolution of a quantum system was
simulated on a classical computer, such that the final state contained the solution to a computational problem.
Kadowaki and Nishimori [54] and Farhi et al. [55] showed that there is an advantage in using algorithms like
these. It was thought that is large, controlled, programmable quantum systems (quantum computers) could be
built, then such advantages would continue, ushering the era of quantum supremacy [56]. Companies such as
DWave have built physical devices, and considerable effort has gone into testing them [57, 58, 59]. Although
small speedups for curated problems have been seen [57, 60], a conclusive picture does not exist.

2.4 Quantum Input Models
The complexities of quantum algorithms often depend on how the input data is accessed. For instance, in
quantum algorithms for linear algebra (involving matrix operations), it is often assumed that there exists
a black-box that returns the positions of the non-zero entries of the underlying matrix when queried. The
algorithmic running time is expressed in terms of the number of queries made to this black-box. Such an input
model, known as the Sparse Access Model, helps design efficient quantum algorithms whenever the underlying
matrices are sparse. Various other input models exist, and quantum algorithms are typically designed and
optimized for specific input models.

Kerenidis and Prakash [34] introduced a different input model, known as the quantum data structure model,
which is more conducive for designing quantum machine learning algorithms. In this model, the input data (e.g:
entries of matrices) arrive online and are stored in a classical data structure (often referred to as the KP-tree in
the literature), which can be queried in superposition by using a QRAM. This facilitates efficiently preparing
quantum states corresponding to the rows of the underlying matrix, that can then be used for performing several
matrix operations.

Subsequently, several quantum-inspired classical algorithms have also been developed following the break-
through result of Tang [61]. Such classical algorithms have the same underlying assumptions as the quantum
algorithms designed in the data structure input model and are only polynomially slower provided the underlying
matrix is low rank.

In this work, we will consider the framework of block-encoding, wherein it is assumed that the input matrix A
(up to some sub-normalization) is stored in the left block of some unitary. The advantage of the block-encoding
framework, which was introduced in a series of works [36, 43, 35, 42], is that it can be applied to a wide variety
of input models. For instance, it can be shown that both the sparse access input model as well as the quantum
data structure input model are specific instances of block-encoded matrices [35, 42]. Here we formally define the
framework of block-encoding and also express the sparse access model as well as the quantum data structure
model as block-encodings. We refer the reader to [35, 42] for proofs.

2.4.1 Unitary Block Encoding of Matrices
Definition 2.4.1 (Block Encoding, restated from [42]). Suppose that A is an s-qubit operator, α, ε ∈ R+ and
a ∈ N, then we say that the (s+ a)-qubit unitary UA is an (α, a, ε)-block-encoding of A, if∥∥∥A− α(⟨0|⊗a ⊗ I)UA(|0⟩⊗a ⊗ I)

∥∥∥ ≤ ε. (2.4.1)

Let |ψ⟩ be an s-qubit quantum state. Then applying UA to |ψ⟩ |0⟩⊗a outputs a quantum state that is ε
α -close

to
A

α
|ψ⟩ |0⟩⊗a

+ |Φ⊥⟩ ,

where
(
Is ⊗ |0⟩⊗a ⟨0|⊗a

)
|Φ⊥⟩ = 0. Equivalently, suppose Ã := α

(
⟨0|⊗a ⊗ Is

)
UA

(
|0⟩⊗a ⊗ Is

)
denotes the

actual matrix that is block-encoded into UA, then
∥∥∥A− Ã

∥∥∥ ≤ ε.
In the subsequent sections, we provide an outline of the quantum data structure model and the sparse access

model which are particular instances of the block encoding framework.
Note that a unitary matrix is a (1, 0, 0)-block-encoding of itself.
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Definition 2.4.2 (Optimal block-encoding of a matrix). Given a matrix A ∈ C2s×2s and a real number α ≥ ∥A∥,
we can construct a (α, 1, 0)-block-encoding of A:

UA =

 A
α

√
I − AA†

α2√
I − A†A

α2
A†

α

 (2.4.2)

2.4.2 QROM Input Model
Kerenidis and Prakash introduced a quantum accessible classical data structure which has proven to be quite
useful for designing several quantum algorithms for linear algebra [34]. The classical data structure stores entries
of matrices or vectors and can be queried in superposition using a QRAM (quantum random access memory).
We directly state the following theorem from therein.

Theorem 2.4.3 (Implementing quantum operators using an efficient data structure, [33, 34]). Let A ∈ RN×d,
and w be the number of non-zero entries of A. Then there exists a data structure of size O

(
w log2 (dN)

)
that given the matrix elements (i, j, aij), stores them at a cost of O(log (dN)) operations per element. Once
all the non-zero entries of A have been stored in the data structure, there exist quantum algorithms that are
ε-approximations to the following maps:

U : |i⟩ |0⟩ 7→ 1

∥Ai,·∥

d∑
j=1

ai,j |i, j⟩ = |ψi⟩ ,

V : |0⟩ |j⟩ 7→ 1

∥A∥F

N∑
i=1

∥Ai, .∥ |i, j⟩ = |ϕj⟩

where ∥Ai,·∥ is the norm of the ith row of A and the second register of |ψi⟩ is the quantum state corresponding
to the ith row of A. These operations can be applied at a cost of O(polylog(Nd/ε)).

It was identified in Ref. [35] that if a matrix A is stored in this quantum accessible data structure, there
exists an efficiently implementable block-encoding of A. We restate their result here.

Lemma 2.4.4 (Implementing block encodings from quantum data structures, [35]). Let the entries of the
matrix A ∈ RN×d be stored in a quantum accessible data structure, then there exist unitaries UR, UL that can be
implemented at a cost of O(polylog(dN/ε)) such that U†

RUL is a (∥A∥F , ⌈log (d+N)⌉, ε)-block-encoding of A.

Proof. The unitaries UR and UL can be implemented via U and V in the previous lemma. Let UR = U and
UL = V.SWAP. Then for s = ⌈log(d+N)⌉ we have

UR : |i⟩ |0s⟩ → |ψi⟩ ,

and
UL : |j⟩ |0s⟩ → |ϕj⟩ ,

So we have that the top left block of U†
RUL if given by

N∑
i=1

d∑
j=1

⟨ψi|ϕj⟩ |i, 0⟩ ⟨j, 0|

Now

⟨ψi|ϕj⟩ =
d∑

k=1

N∑
ℓ=1

aik
∥Ai,·∥

· ∥Aℓ∥
∥A∥F

⟨i, k|l, j⟩︸ ︷︷ ︸
:=δi,l.δk,j

=
aij

∥A∥F
.

Moreover since only ε-approximations of U and V can be implemented we have that U†
RUL is a (∥A∥F , ⌈log(n+ d)⌉, ε)

block encoding of A implementable with the same cost as U and V .
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Kerenidis and Prakash [32] argued that in certain scenarios, storing the entries of A(p), (A1−p)† might
be useful as compared to storing A, for some p ∈ [0, 1]. In such cases, the quantum data structure is a
(µp, ⌈log(N + d)⌉, ε) block encoding of A, where µp(A) =

√
s2p(A).s2(1−p)(AT ) such that sp(A) := maxj ∥Aj,·∥qq.

Throughout the work, whenever our results are expressed in the quantum data structure input model, we shall
state our complexity in terms of µA. When the entries of A are directly stored in the data structure, µA = ∥A∥F .
Although, we will not state it explicitly each time, our results also hold when fractional powers of A are stored
in the database and simply substituting µA = µp(A), yields the required complexity.

2.4.3 Sparse Access Input Model
The sparse access input model considers that the input matrix A ∈ RN×d has row sparsity sr and column
sparsity sc. Furthermore, it assumes that the entries of A can be queried via an oracle as

OA : |i⟩ |j⟩ |0⟩⊗b 7→ |i⟩ |j⟩ |aij⟩ ∀i ∈ [N ], j ∈ [d],

and the indices of the non-zero elements of each row and column can be queried via the following oracles:

Or : |i⟩ |j⟩ 7→ |i⟩ |rij⟩ ∀i ∈ [N ], k ∈ [sr],

Oc : |i⟩ |j⟩ 7→ |cij⟩ |j⟩ ∀i ∈ [d], k ∈ [sc]

where rij is the jth non-zero entry of the ith row of A and cij is the ith non-zero entry of the jth column of A.
Gilyén et al. [42] showed that a block encoding of a sparse A can be efficiently prepared by using these three
oracles. We restate their lemma below.

Lemma 2.4.5 (Constructing a block-encoding from sparse-access to matrices, [42]). Let A ∈ RN×d be an
sr, sc row, column sparse matrix given as a sparse access input. Then for all ε ∈ (0, 1), we can implement a
(
√
scsr,polylog(Nd/ε), ε)-block-encoding of A with O(1) queries to Or, Oc, OA and polylog(Nd/ε) elementary

quantum gates.

Throughout the paper, we shall assume input matrices are accessible via approximate block-encodings. This
also allows us to write down the complexities of our quantum algorithms in this general framework. Additionally,
we state the complexities in both the sparse access input model as well as the quantum accessible data structure
input model as particular cases.

2.5 Quantum Singular Value Transformation
In a seminal work, Gilyén et al. presented a framework to apply an arbitrary polynomial function to the
singular values of a matrix, known as Quantum Singular Value Transformation (QSVT) [42]. QSVT is quite
general: many quantum algorithms can be recast to this framework, and for several problems, better quantum
algorithms can be obtained [42, 44]. In particular, QSVT has been extremely useful in obtaining optimal
quantum algorithms for linear algebra. For instance, using QSVT, given the block-encoding of a matrix A, one
could obtain A−c with c ∈ [0,∞) with optimal complexity and by using fewer additional qubits than prior art.
This section briefly describes this framework, which is a generalization of Quantum Signal Processing (QSP)
[36, Section 2], [43, Theorem 2], [62]. The reader may refer to [44] for a more pedagogical overview of these
techniques.

Let us begin by discussing the framework of Quantum Signal Processing. QSP is a quantum algorithm to
apply a d-degree bounded polynomial transformation with parity d mod 2 to an arbitrary quantum subsystem,
using a quantum circuit UΦ consisting of only controlled single qubit rotations. This is achieved by interleaving
a signal rotation operator W (which is an x-rotation by some fixed angle θ) and a signal processing operator
Sϕ (which is a z-rotation by a variable angle ϕ ∈ [0, 2π]). In this formulation, the signal rotation operator is
defined as

W (x) :=

(
x i

√
1− x2

i
√
1− x2 x

)
, (2.5.1)

which is an x-rotation by angle θ = −2 arccos(x), and the signal processing operator is defined as

Sϕ := eiϕZ , (2.5.2)
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which is a z-rotation by an angle −2ϕ. Interestingly, sandwiching them together for some Φ := (ϕ0, ϕ1, . . . ϕd) ∈
Rd+1, as shown in Equation 2.5.3, gives us a matrix whose elements are polynomial transformations of x,

UΦ := eiϕ0Z

j=d∏
j=1

(
W (x)eiϕjZ

)
(2.5.3)

=

(
P (x) iQ(x)

√
1− x2

iQ∗(x)
√
1− x2 P ∗(x)

)
, (2.5.4)

such that

1. degP ≤ d; degQ ≤ d− 1,

2. P (x) has a parity d mod 2,

3. |P (x)|2 + (1− x2)|Q(x)|2 = 1 ∀x ∈ [−1, 1].

Following the application of the quantum circuit UΦ for an appropriate Φ, one can project into the top left
block of UΦ to recover the polynomial ⟨0|UΦ |0⟩ = P (x). Projecting to other basis allows the ability to perform
more interesting polynomial transformations, which can be linear combinations of P (x), Q(x), and their complex
conjugates. For example, projecting to {|+⟩ , |−⟩} basis gives us

⟨+|UΦ |+⟩ = ℜ(P (x)) + iℜ(Q(x))
√
1− x2. (2.5.5)

Quantum Signal Processing can be formally stated as follows.

Theorem 2.5.1 (Quantum Signal Processing, Corollary 8 from [42]). Let P ∈ C[x] be a polynomial of degree
d ≥ 2, such that

• P has parity-(d mod 2),

• ∀x ∈ [−1, 1] : |P (x)| ≤ 1,

• ∀x ∈ (−∞,−1] ∪ [1,∞) : |P (x)| ≥ 1,

• if d is even, then ∀x ∈ R : P (ix)P ∗(ix) ≥ 1.

Then there exists a Φ ∈ Rd such that

d∏
j=1

(
eiϕjσzW (x)

)
=

(
P (x) ·
· ·

)
. (2.5.6)

Thus, QSP allows us to implement any polynomial P (x) that satisfies the aforementioned requirements.
Throughout this article, we refer to any such polynomial P (x) as a QSP polynomial. Quantum Singular
Value Transformation is a natural generalization of this procedure. It allows us to apply a QSP polynomial
transformation to each singular value of an arbitrary block of a unitary matrix. In addition to this generalization,
QSVT relies on the observation that several functions can be well-approximated by QSP polynomials. Thus,
through QSVT one can transform each singular value of a block-encoded matrix by any function that can
be approximated by a QSP polynomial. Since several linear algebra problems boil down to applying specific
transformations to the singular values of a matrix, QSVT is particularly useful for developing fast algorithms
for quantum linear algebra. Next, we introduce QSVT formally via the following theorem.

Theorem 2.5.2 (Quantum Singular Value Transformation [63], Section 3.2). Suppose A ∈ RN×d is a matrix
with singular value decomposition A =

∑dmin

j=1 σj |vj⟩ ⟨wj |, where dmin = min{N, d} and |vj⟩ (|wj⟩) is the left
(right) singular vector with singular value σj. Furthermore, let UA be a unitary such that A = Π̃UAΠ, where
Π and Π̃ are orthogonal projectors. Then, for any QSP polynomial P (x) of degree n, there exists a vector
Φ = (ϕ1, ϕ2, · · ·ϕn) ∈ Rn and a unitary

UΦ =

e
iϕ1(2Π̃−I)UA

[∏(n−1)/2
k=1 eiϕ2k(2Π̃−I)U†

Ae
iϕ2k+1(2Π̃−I)UA

]
, n is odd[∏n/2

k=1 e
iϕ2k−1(2Π̃−I)U†

Ae
iϕ2k(2Π̃−I)UA

]
, n is even,

(2.5.7)
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such that

PSV (A) =

{
Π̃UΦΠ, n is odd
ΠUΦΠ, n is even,

(2.5.8)

where PSV (A) is the polynomial transformation of the matrix A defined as

PSV (A) :=

{∑
j P (σj) |vj⟩ ⟨wj | , P is odd∑
j P (σj) |wj⟩ ⟨wj | , P is even.

(2.5.9)

Theorem 2.5.2 tells us that for any QSP polynomial P of degree n, we can implement PSV (A) using one
ancilla qubit, Θ(n) applications of UA, U†

A and controlled reflections I − 2Π and I − 2Π̃. Furthermore, if in
some well-defined interval, some function f(x) is well approximated by an n-degree QSP polynomial P (x), then
Theorem 2.5.2 also allows us to implement a transformation that approximates f(A), where

f(A) :=

{∑
j f(σj) |vj⟩ ⟨wj | , P is odd∑
j f(σj) |wj⟩ ⟨wj | , P is even.

(2.5.10)

The following theorem from Ref. [63] deals with the robustness of the QSVT procedure, i.e. how errors propagate
in QSVT. In particular, for two matrices A and Ã, it shows how close their polynomial transformations (PSV (A)

and PSV (Ã), respectively) are, as a function of the distance between A and Ã.

Lemma 2.5.3 (Robustness of Quantum Singular Value Transformation, [63], Lemma 23). Let P ∈ C[x] be a
QSP polynomial of degree n. Let A, Ã ∈ CN×d be matrices of spectral norm at most 1, such that

∥∥∥A− Ã
∥∥∥+ ∥∥∥∥∥A+ Ã

2

∥∥∥∥∥
2

≤ 1.

Then, ∥∥∥PSV (A)− PSV (Ã)
∥∥∥ ≤ n

√√√√ 2

1−
∥∥∥A+Ã

2

∥∥∥2
∥∥∥A− Ã

∥∥∥.
We will apply this theorem to develop a robust version of QSVT. More precisely, in order to implement

QSVT, we require access to a unitary UA, which is a block-encoding of some matrix A. This block-encoding, in
most practical scenarios, is not perfect: we only have access to a ε-approximate block-encoding of A. If we want
an δ-accurate implementation of PSV (A), how precise should the block-encoding of A be? Such a robustness
analysis has been absent from prior work involving QSVT and will allow us to develop robust versions of
a number of quantum algorithms in subsequent sections. The following theorem determines the precision ε
required in the block-encoding of A in terms of n, the degree of the QSP polynomial that we wish to implement
and δ, the accuracy of PSV (A).

Theorem 2.5.4 (Robust QSVT). Let P ∈ C[x] be a QSP polynomial of degree n ≥ 2. Let δ ∈ [0, 1] be
the precision parameter. Let U be an (α, a, ε)-block-encoding of matrix A ∈ CN×d satisfying ∥A∥ ≤ α/2,
implemented in cost T for some ε ≤ αδ/2n. Then we can construct a (1, a+ 1, δ)-block-encoding of P (A/α) in
cost O(nT ).

Proof. Let Ã be the encoded block of U , then
∥∥∥A− Ã

∥∥∥ ≤ ε. Applying QSVT on U with the polynomial P ,

we get a block-encoding for P (Ã/α), with O(n) uses of U,U†, and as many multiply-controlled NOT gates.
Observe that

∥∥∥A
α − Ã

α

∥∥∥ ≤ ε
α ≤ δ

2n ≤ 1
4 , and,

∥∥∥∥∥ A
α + Ã

α

2

∥∥∥∥∥
2

=

∥∥∥∥∥Aα +
Ã−A

2α

∥∥∥∥∥
2

≤

∥A∥
α

+

∥∥∥Ã−A
∥∥∥

2α

2

≤
(
1

2
+

1

8

)2

≤ 1

2

Therefore the error in the final block-encoding is given by invoking Lemma 2.5.3 with matrices A/α, Ã/α:∥∥∥∥∥P
(
A

α

)
− P

(
Ã

α

)∥∥∥∥∥ ≤ n

√
2

1− 1
2

ε

α
=

2nε

α
≤ δ.

18



CHAPTER 2. BACKGROUND

In chapter 3, we will make use of Theorem 2.5.4, to develop robust quantum algorithms for singular value
discrimination, variable-time matrix inversion, and negative powers of matrices. Subsequently, in chapter 5 we
shall use these primitives to design robust quantum regularized least squares algorithms.

2.6 Variable Time Amplitude Amplification
Ambainis [45] defined the notion of a variable-stopping-time quantum algorithm and formulated the technique
of Variable Time Amplitude Amplification (VTAA), a tool that can be used to amplify the success probability of
a variable-stopping-time quantum algorithm to a constant by taking advantage of the fact that computation on
some parts of an algorithm can complete earlier than on other parts. The key idea here is to look at a quantum
algorithm A acting on a state |ψ⟩ as a combination of m quantum sub-algorithms A = Am · Am−1 · . . .A1, each
acting on |ψ⟩ conditioned on some ancilla flag being set. Formally, a variable stopping time algorithm is defined
as follows

Definition 2.6.1 (Variable-stopping-time Algorithm, [45]). A quantum algorithm A acting on H that can be
written as m quantum sub-algorithms, A = Am · Am−1 · . . .A1 is called a variable stopping time algorithm if
H = HC ⊗ HA, where HC = ⊗m

i=1HCi
with HCi

= span(|0⟩ , |1⟩), and each unitary Aj acts on HCj
⊗ HA

controlled on the first j − 1 qubits |0⟩⊗j−1 ∈ ⊗j−1
i=1HCi

being in the all zero state.

Here HCi
is a single qubit clock register. In VTAA, HA has a flag space consisting of a single qubit to indicate

success, HA = HF ⊗ HW . Here HF = Span(|g⟩ , |b⟩) flags the good and bad parts of the run. Furthermore,
for 1 ≤ i ≤ m, define the stopping times ti such that t1 < t2 < · · · tm = Tmax, such that the algorithm
AjAj−1 · · · A1 having (gate/query) complexity ti halts with probability

pj =
∥∥ΠCj

AjAj−1 · · · A1 |0⟩H
∥∥2,

where |0⟩H ∈ H is the all zero quantum state and ΠCj
is the projector onto |1⟩ in HCj

. From this one can
define the average stopping time of the algorithm A defined as

∥T∥2 =

√√√√ m∑
j=1

pjt2j .

For a variable stopping time algorithm if the average stopping time ∥T∥2 is less than the maximum stopping time
Tmax, VTAA can amplify the success probability (psucc) much faster than standard amplitude amplification. In
this framework, the success probability of A is given by

psucc = ∥ΠFAmAm−1 · · · A1 |0⟩H∥2

While standard amplitude amplification requires time scaling as O
(
Tmax/

√
psucc

)
, the complexity of VTAA is

more involved. Following [35], we define the complexity of VTAA as follows.

Lemma 2.6.2 (Efficient variable time amplitude amplification [35]). Let U be a state preparation unitary such
that U |0⟩⊗k

=
√
pprep |0⟩ |ψ0⟩+

√
1− pprep |1⟩ |ψ1⟩ that has a query complexity TU . And let A = AmAm−1 · · · A1

be a variable stopping time quantum algorithm that we want to apply to the state |ψ0⟩, with the following known
bounds: pprep ≥ p′prep and psucc ≥ p′succ. Define T ′

max := 2Tmax/t1 and

Q :=

(
Tmax +

TU + k
√
pprep

)√
log (T ′

max) +

(
∥T∥2 +

TU+k√
pprep

)
log (T ′

max)
√
psucc

.

Then with success probability ≥ 1 − δ, we can create a variable-stopping time algorithm A′ that prepares the
state a |0⟩A′ |ψ0⟩+

√
1− a2 |1⟩ |ψgarbage⟩, such that a = Θ(1) is a constant and A′ has the complexity O(Q).

One cannot simply replace standard amplitude amplification with VTAA to boost the success probability
of a quantum algorithm. A crucial task would be to recast the underlying algorithm in the VTAA framework.
We will be applying VTAA to the quantum algorithm for matrix inversion by QSVT. So, first of all, in order to
apply VTAA to the algorithm must be first recast into a variable-time stopping algorithm so that VTAA can
be applied.

Originally, Ambainis [45] used VTAA to improve the running time of the HHL algorithm from O
(
κ2 logN

)
to O

(
κ log3 κ logN

)
. Childs et al. [46] designed a quantum linear systems algorithm with a polylogarithmic
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dependence on the accuracy. Additionally, they recast their algorithm into a framework where VTAA could be
applied to obtain a linear dependence on κ. Later Chakraborty et al. [35] modified Ambainis’ VTAA algorithm
to perform variable time amplitude estimation.

In this work, to design quantum algorithms for ℓ2-regularized linear regression, we use a quantum algorithm
for matrix inversion by QSVT. We recast this algorithm in the framework of VTAA to achieve nearly linear
dependence in κ (the condition number of the matrix to be inverted). QSVT instead of controlled Hamiltonian
simulation improves the complexity of the overall matrix inversion algorithm (using QSVT and VTAA) by a log
factor and reduces the number of additional qubits substantially. Furthermore, we replace a quantum gapped
phase estimation procedure with a more efficient quantum eigenvalue discrimination algorithm using QSVT.
This further reduces the number of additional qubits by O(log2(κ/δ)) than in Refs. [46, 35], where κ is the
condition number of the underlying matrix and δ is the desired accuracy. The details of a variable stopping
time quantum algorithm for matrix inversion by QSVT is laid out in section 4.3.
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Chapter 3

Algorithmic Primitives

This chapter introduces the building blocks of our quantum algorithms for quantum linear regression with
general ℓ2-regularization. As mentioned previously, we work in the block-encoding framework. We develop
robust quantum algorithms for arithmetic operations, inversion, and positive and negative powers of matrices
using quantum singular value transformation, assuming that we have access to approximate block-encodings of
these matrices. While some of these results were previously derived assuming perfect block-encodings [42, 35],
we calculate the precision required in the input block-encodings to output a block-encoding or quantum state
arbitrarily close to the target.

We highlight that the primitives developed here might be of independent interest to the quantum machine
learning community. In developing these primitives, we improve upon various algorithms used frequently in this
domain, and in some cases highlight the robustness of the algorithms in the QSVT framework.i

In particular for the problem of inverting a matrix using QSVT, we reformulate QSVT-based matrix inversion
as a variable stopping time algorithm such that VTAA is applicable. The use of QSVT instead of controlled
Hamiltonian simulation improves the complexity of the overall matrix inversion algorithm (using QSVT and
VTAA) by a log factor and reduces the number of ancilla qubits substantially. Furthermore, in order to convert
the usual matrix inversion algorithm to a variable stopping time algorithm, we make use of quantum eigenvalue
discrimination using QSVT [44], instead of gapped phase estimation used in [46]. This further reduces the
number of additional qubits by O(log2(κ/δ)), where κ is the condition number of the underlying matrix and δ
is the desired accuracy.

3.1 Amplification of Block Encodings
Given a (α, a, ε)-block-encoding of a matrix A, we can efficiently amplify the sub-normalization factor from α
to a constant and obtain an amplified block-encoding of A. For our quantum algorithms in Sec. 4.3, we show
working with pre-amplified block-encodings often yields better complexities. We state the following lemma
which was proven in Ref. [64]:

Lemma 3.1.1 (Uniform Block Amplification of Contractions, [64]). Let A ∈ RN×d such that ∥A∥ ≤ 1 If α ≥ 1
and U is a (α, a, ε)-block-encoding of A that can be implemented at a cost of TU , then there is a (

√
2, a+1, ε+γ)-

block-encoding of A that can be implemented at a cost of O(αTU log (1/γ)).

Corollary 3.1.2 (Uniform Block Amplification). Let A ∈ RN×d and δ ∈ (0, 1]. Suppose U is a (α, a, ε)-block-
encoding of A, such that ε ≤ δ

2 , that can be implemented at a cost of TU . Then a (
√
2∥A∥, a+1, δ)-block-encoding

of A can be implemented at a cost of O
(

αTU

∥A∥ log (∥A∥/δ)
)
.

Proof. We can re-interpret U as a (α/∥A∥, a, ε/∥A∥)-block-encoding of A/∥A∥. Invoking Lemma 3.1.1 with γ =
δ

2∥A∥ , we get U ′, a (
√
2, a+1, ε/∥A∥+ δ

2∥A∥ )-block-encoding ofA/∥A∥, implemented at a cost of O
(

α
∥A∥TU log (∥A∥/δ)

)
which is a (

√
2∥A∥, a+ 1, δ)-block-encoding of A.

We now obtain the complexity of applying a block-encoded matrix to a quantum state, which is a general-
ization of a lemma proven in Ref. [35].

iBy robustness we mean that we highlight how the error in the encoding of the input affects the encoding of the output.
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Lemma 3.1.3 (Applying a Block-encoded Matrix on a Quantum State). Let A be an s-qubit operator such that
its singular values lie in [∥A∥/κ, ∥A∥]. Also let δ ∈ (0, 1), and UA be an (α, a, ε)-block-encoding of A, such that

ε ≤ δ∥A∥
2κ

,

that can be implemented in time TA. Furthermore, suppose |b⟩ be an s-qubit quantum state that can be prepared
in time Tb. Then we can prepare a state that is δ-close to A|b⟩

∥A|b⟩∥ with success probability Ω (1) at a cost of

O
(
ακ

∥A∥
(TA + Tb)

)
Proof. The proof is similar to Lemma 24 of [35]. We have ∥A |b⟩∥ ≥ ∥A∥

κ . By applying UA to |0⟩ |b⟩ (imple-
mentable at a cost of TA + TB), followed by ακ

∥A∥ -rounds of amplitude amplification (conditioned on having |0⟩
in the first register) , we obtain a quantum state that within δ of |0⟩ ⊗ A|b⟩

∥A|b⟩∥ .

Corollary 3.1.4 (Applying a pre-amplified Block-encoded Matrix on a Quantum State). Let A be an s-qubit
operator such that its singular values lie in [∥A∥/κ, ∥A∥]. Also let δ ∈ (0, 1), and UA be an (α, a, ε)-block-encoding
of A, such that

ε ≤ δ∥A∥
4κ

,

that can be implemented in time TA. Furthermore, suppose |b⟩ be an s-qubit quantum state that can be prepared
in time Tb. Then we can prepare a state that is δ-close to A|b⟩

∥A|b⟩∥ with success probability Ω (1) at a cost of

O
(
ακ

∥A∥
log
(κ
δ

)
TA + κTb

)
Proof. We first pre-amplify the unitary using Corollary 3.1.2 with some γ ≥ 2ε. We get a (

√
2∥A∥, a + 1, γ)-

block-encoding of A implemented at a cost of

TA′ := O
(
αTA
∥A∥

log

(
∥A∥
γ

))
Now we invoke Lemma 3.1.3 with δ = 2κγ

∥A∥ and the above unitary to prepare the state, which has a time
complexity of

O(κ (TA′ + Tb)) = O
(
ακ

∥A∥
log
(κ
δ

)
TA + κTb

)

Now, it may happen that the Ub prepares a quantum state that is only ε-close to the desired state |b⟩. In
such cases, we have the following lemma

Lemma 3.1.5 (Robustness of state preparation). Let A be an s-qubit operator such that its singular values
lie in [∥A∥

κ , ∥A∥]. Suppose |b′⟩ is a quantum state that is ε/2κ-close to |b⟩ and |ψ⟩ is a quantum state that is
ε/2-close to A |b′⟩ /∥A |b′⟩∥. Then we have that |ψ⟩ is ε-close to A |b⟩ /∥A |b⟩∥.

Proof. We know that
∥|b⟩ − |b′⟩∥ ≤ ε

2κ

and ∥∥∥∥|ψ⟩ − A |b′⟩
∥A |b′⟩∥

∥∥∥∥ ≤ ε

2

For small enough ε≪ κ, we can assume that ∥A |b⟩∥ ≈ ∥A |b′⟩∥.

We can derive the final error as∥∥∥∥|ψ⟩ − A |b⟩
∥A |b⟩∥

∥∥∥∥ =

∥∥∥∥|ψ⟩ − A |b⟩ −A |b′⟩+A |b′⟩
∥A |b⟩∥

∥∥∥∥
=

∥∥∥∥|ψ⟩ − A |b′⟩
∥A |b⟩∥

+
A |b′⟩ −A |b′⟩

∥A |b⟩∥

∥∥∥∥
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≤
∥∥∥∥|ψ⟩ − A |b′⟩

∥A |b′⟩∥

∥∥∥∥+ ∥∥∥∥A |b′⟩ −A |b′⟩
∥A |b⟩∥

∥∥∥∥
≤ ε

2
+

∥A∥∥|b⟩ − |b′⟩∥
∥A |b⟩∥

≤ ε

2
+
ε

2
= ε

3.2 Arithmetic with Block-Encoded Matrices
The block-encoding framework embeds a matrix on the top left block of a larger unitary U . It has been
demonstrated framework allows us to obtain sums, products, linear combinations of block-encoded matrices.
This is particularly useful for solving linear algebra problems in general. Here, we state some of the arithmetic
operations on block-encoded matrices that we shall be using in order to design the quantum algorithms of
chapter 5 and tailor existing results to our requirements.

First we prove a slightly more general form of linear combination of unitaries in the block-encoding frame-
work, presented in [42]. To do this we assume that we are given optimal state preparation pairs, defined as
follows.

Lemma 3.2.1 (Optimal State Preparation Unitary). Let m ∈ Z+, η ∈ Rm
+ , and s = ⌈logm⌉. Then there exists

an s-qubit unitary P – called a η state-preparation unitary – such that P |0⟩ is proportional to
∑

j

√
ηj |j⟩

Lemma 3.2.2 (Linear Combination of Block Encoded Matrices). For each j ∈ {0, . . . ,m − 1}, let Aj be an
s-qubit operator, and yj ∈ R+. Let Uj be a (αj , aj , εj)-block-encoding of Aj , implemented in time Tj. Define
the matrix A =

∑
j yjAj, and the vector η ∈ Rm s.t. ηj = yjαj. Let Uη be a η state-preparation unitary ,

implemented in time Tη. Then we can implement a∑
j

yjαj ,max
j

(aj) + s,
∑
j

yjεj


block-encoding of A at a cost of O

(∑
j Tj + Tη

)
.

Proof. The proof is similar to the one in Ref. [42], with some improvements to the bounds. Let a = maxj(aj)+s
and α =

∑
j yjαj . For each j ∈ {0, . . . ,m−1}, construct the extended unitary U ′

j by padding ancillas to Uj , i.e.
U ′
j = Ia−s−aj

⊗ Uj . Note that U ′
j is a (αj , a− s, εj)-block-encoding of Aj . Let Bj = (⟨0|aj ⊗ Is)Uj(|0⟩aj ⊗ Is)

denote the top left block of Uj and U ′
j , and observe that ∥Aj − αjBj∥ ≤ εj . We also construct P — an η

state-preparation unitary s.t. P |0⟩ =
∑

j

√
yjαj |j⟩ — by invoking Lemma 3.2.1.

Consider the unitary W = (P †⊗ Ia−1⊗ Is)(
∑

j |j⟩⟨j|⊗U ′
j)(P ⊗ Ia−1⊗ Is). This is a (α, a, ε)-block-encoding

of A =
∑

j yjAj , where ε is computed as:

∥A− α(⟨0|a ⊗ Is)W (|0⟩a ⊗ Is)∥ =

∥∥∥∥∥∥
m−1∑
j=0

yjAj − α(⟨0|a ⊗ Is)W (|0⟩a ⊗ Is)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
j

yjAj − α(⟨0|a ⊗ Is)(
∑
j

P † |j⟩⟨j|P ⊗ U ′
j)(|0⟩

a ⊗ Is)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
j

yjAj − α
∑
j

⟨0|P † |j⟩⟨j|P |0⟩ ⊗Bj

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
j

(
yjAj − α ⟨0|P † |j⟩⟨j|P |0⟩Bj

)∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
j

(
yjAj − α

(yjαj

α

)
Bj

)∥∥∥∥∥∥
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≤
∑
j

yj∥Aj − αjBj∥

≤
∑
j

yjεj = ε

We now specialize the above lemma for the case where we need a linear combination of just two unitaries.
This is the case used in this work, and we obtain a better error scaling for this by giving an explicit state
preparation unitary.

Corollary 3.2.3 (Linear Combination of Two Block Encoded Matrices). For j ∈ {0, 1}, let Aj be an s-qubit
operator and yj ∈ R+. Let Uj be a (αj , aj , εj)-block-encoding of Aj, implemented in time Tj. Then we can
implement a (y0α0 + y1α1, 1 + max(a0, a1), y0ε0 + y1ε1) encoding of y0A0 + y1A1 in time O(T0 + T1).

Proof. Let α = y0α0 + y1α1 and P = 1√
α

(√
y0α0 −√

y1α1√
y1α1

√
y0α0

)
. By Lemma 3.2.1, we have that P is an

{y0α0, y1α1} state preparation unitary. Invoking Lemma 3.2.2 with P , we get the required unitary.

Given block-encodings of two matrices A and B, it is easy to obtain a block-encoding of AB.

Lemma 3.2.4 (Product of Block Encodings, [42]). If UA is an (α, a, δ)-block-encoding of an s-qubit operator A
implemented in time TA, and UB is a (β, b, ε)-block-encoding of an s-qubit operator B implemented in time TB,
then (I⊗b⊗UA)(I

⊗a⊗UB) is an (αβ, a+b, αε+βδ)-block-encoding of AB implemented at a cost of O(TA + TB).

Directly applying Lemma 3.2.4 results in a block-encoding of AB
αβ . If α and β are large, then the sub-

normalization factor αβ might incur an undesirable overhead to the cost of the algorithm that uses it. In
many cases, the complexity of obtaining products of block-encodings can be improved if we first amplify the
block-encodings (using Lemma 3.1.2) and then apply Lemma 3.2.4. We prove the following lemma:

Lemma 3.2.5 (Product of Amplified Block-Encodings). Let δ ∈ (0, 1]. If UA is an (αA, aA, εA)-block-encoding
of an s-qubit operator A implemented in time TA, and UB is a (αB , aB , εB)-block-encoding of an s-qubit operator
B implemented in time TB, such that εA ≤ δ

4
√
2∥B∥ and εB ≤ δ

4
√
2∥A∥ . Then we can implement a (2∥A∥∥B∥, aA+

aB + 2, δ)-block-encoding of AB implemented at a cost of

O
((

αA

∥A∥
TA +

αB

∥B∥
TB

)
log

(
∥A∥∥B∥

δ

))
.

Proof. Using Corollary 3.1.2 for some δA ≥ 2εA we get a (
√
2∥A∥, aA + 1, δA)-block-encoding of A at a cost of

O
(
αATA
∥A∥

log (∥A∥/δA)
)
.

Similarly for some δB ≥ 2εB we get a (
√
2∥B∥, aB + 1, δB)-block-encoding of B at a cost of

O
(
αBTB
∥B∥

log (∥B∥/δB)
)
.

Now using Lemma 3.2.4 we get a (2, aA + aB + 2,
√
2 (∥A∥δB + ∥B∥δA))-block-encoding of AB. We can choose

δA = δ
2
√
2∥B∥ and δB = δ

2
√
2∥A∥ which bounds the final block-encoding error by δ.

Observe that we have assumed that A and B are s-qubit operators. For any two matrices of dimension
N × d and d×K, such that N, d,K ≤ 2s, we can always pad them with rows and columns of zero entries and
convert them to s-qubit operators. Thus, in the scenario where A and B are not s-qubit operators, one can
consider block encodings of padded versions of these matrices. Note that this does not affect the operations on
the sub-matrix blocks encoding A and B. Thus, the above results can be used to perform block-encoded matrix
products for arbitrary (compatible) matrices.

Next we show how to find the block encoding of tensor product of matrices from their block encodings. This
procedure will be useful in creating the dilated matrices required for regularization.
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Lemma 3.2.6 (Tensor Product of Block Encoded Matrices). Let U1 and U2 be (α, a, ε1) and (β, b, ε2)-block-
encodings of A1 and A2, s and t-qubit operators, implemented in time T1 and T2 respectively. Define S :=
Πs

i=1SWAP
a+i
a+b+i. Then, S(U1⊗U2)S

† is an (αβ, a+ b, αε2+βε1+ ε1ε2) block-encoding of A1⊗A2, implemented
at a cost of O(T1 + T2).

Proof. From the property of Kronecker products (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD). For j ∈ {1, 2} let Ãj =(
⟨0|⊗aj ⊗ Is

)
Uj

(
|0⟩⊗aj ⊗ Is

)
. Then it follows that(

⟨0|⊗a ⊗ Is ⊗ ⟨0|⊗b ⊗ It

)
(U1 ⊗ U2)

(
|0⟩⊗a ⊗ Is ⊗ |0⟩⊗b ⊗ It

)
= Ã1 ⊗ Ã2 (3.2.1)

Therefore Ã1⊗ Ã2 is block-encoded in U1⊗U2 as a non-principal block-encoding, and we can use SWAP gates
to move it to the principal block as follows.

S
(
|0⟩⊗a ⊗ Is |0⟩⊗b ⊗ It

)
= Πs

i=1SWAP
a+i
a+b+i

(
|0⟩⊗a ⊗ Is |0⟩⊗b ⊗ It

)
= Πs−1

i=1SWAP
a+i
a+b+iSWAP

a+s
a+b+s

(
|0⟩⊗a ⊗ Is |0⟩⊗b ⊗ It

)
= Πs−1

i=1SWAP
a+i
a+b+i

(
|0⟩⊗a ⊗ Is−1 |0⟩⊗b ⊗ It+1

)
= . . .

= |0⟩⊗a+b ⊗ Is+t

Similarly, (
⟨0|⊗a ⊗ Is ⊗ ⟨0|⊗b ⊗ It

)
S† = ⟨0|⊗a+b ⊗ Is+t.

From Equation 3.2.1 we have

Ã1 ⊗ Ã2 =
(
⟨0|⊗a ⊗ Is ⊗ ⟨0|⊗b ⊗ It

)
S†S(U1 ⊗ U2)S

†S
(
|0⟩⊗a ⊗ Is |0⟩⊗b ⊗ It

)
=
(
⟨0|⊗a+b ⊗ Is+t

)
S(U1 ⊗ U2)S

†
(
|0⟩⊗a+b ⊗ Is+t

)
Next, we look at the sub-normalization and error terms.

∥∥∥A1 ⊗A2 − αβÃ1 ⊗ Ã2

∥∥∥
2
≤
∥∥∥(αÃ1 + ε1Is)⊗ (βÃ2 + ε2It)− αÃ1 ⊗ βÃ2

∥∥∥
2

=
∥∥∥αÃ1 ⊗ ε2I2 + ε1Is ⊗ βÃ2 + ε1Is ⊗ ε2I2

∥∥∥
2

≤ αε2

∥∥∥Ã1

∥∥∥
2
+ βε2

∥∥∥Ã2

∥∥∥
2
+ ε1ε2

= αε2 + βε1 + ε1ε2

where we have used ∥A1∥2 ≤ α
∥∥∥Ã1

∥∥∥
2
+ ε1 and

∥∥∥Ã1

∥∥∥
2
≤ 1 and similarly for A2.

We will now use Lemma 3.2.6 to augment one matrix into another, given their approximate block-encodings.

Lemma 3.2.7 (Block-encoding of augmented matrix). If UA is an (αA, aA, εA)-block encoding of an s-qubit
operator A that can be implemented in time TA and UB is an (αB , aB , εB)-block encoding of an s-qubit operator
B that can be implemented in time TB, then we an implement an (αA + αB ,max(aA, aB) + 2, εA + εB)-block-
encoding of

AB =

(
A 0
B 0

)
at a cost of O(TA + TB).
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Proof. Let MA =

(
1 0
0 0

)
. Then the SWAP gate is a (1, 1, 0) block encoding of MA. By Lemma 3.2.6, we can

implement U ′
A, an (αA, aA+1, εA)-block-encoding of their tensor product MA⊗A =

(
A 0
0 0

)
at a cost of O(TA).

Similarly, Let MB =

(
0 0
1 0

)
. Then (I ⊗X) · SWAP is a (1, 1, 0)-block-encoding of MB . Similarly Lemma 3.2.6,

we can implement U ′
B , an (αB , aB + 1, εB)-block-encoding of MB ⊗B =

(
0 0
B 0

)
at a cost of O(TB). We add

them by using Corollary 3.2.3 on U ′
A and U ′

B , to implement UAB
, an (αA+αB , 2+max(aA, aB), εA+εB)-block-

encoding of AB =

(
A 0
B 0

)
. This can be implemented at a cost of O(TA + TB).

Lemma 3.2.8 (Block-Encoding of a dilated matrix). If UA is an (α, a, ε)-block-encoding of an s-qubit operator

A implemented in time TA, then there is a (α, a, ε)-block-encoding of an s + 1-qubit operator Ā :=

(
0 A
A† 0

)
,

that can be prepared at a cost of O(TA).

Proof. By adding an additional qubit, we can implement a controlled unitary C-UA that acts on (a + s + 1)
qubits such that controlled on the (a+ 1)th qubit, it implements UA on the first a and the last s qubits. Let,

V = C-U†
A(X ⊗ I)C-UA = |0⟩⟨1| ⊗ UA + |1⟩⟨0| ⊗ U†

A,

Then SWAPa,1V is an (α, a, ε)-block encoding of Ā. Here SWAPa,1 is a sequence of SWAP gates that swaps the
entire a-qubit register, |0⟩⊗a with the single qubit control register, one qubit at a time.

When using a dilated matrix Ā, we must also extend the input state to ¯|b⟩ = |0⟩ |b⟩. This just increases the
number of input qubits by 1, but keeps the rest of the behavior identical to the non-dilated setting.

3.3 Robust Quantum Singular Value Discrimination
The problem of deciding whether the eigenvalues of a Hamiltonian lie above or below a certain threshold,
known as eigenvalue discrimination, finds widespread applications. For instance, the problem of determining
whether the ground energy of a generic local Hamiltonian is < λa or > λb is known to be QMA-Complete [65].
Nevertheless, quantum eigenvalue discrimination has been useful in preparing ground states of Hamiltonians.
Generally, a variant of quantum phase estimation, which effectively performs a projection onto the eigenbasis of
the underlying Hamiltonian, is used to perform eigenvalue discrimination [66]. Recently, it has been shown that
QSVT can be used to approximate a projection onto the eigenspace of an operator by implementing a polynomial
approximation of the sign function [67]. This was then used to design improved quantum algorithms for ground
state preparation.

In our work, we design a more general primitive, known as Quantum Singular Value Discrimination (QSVD).
Instead of eigenvalues, the algorithm distinguishes whether a singular value σ is ≤ σa or ≥ σb. This is particu-
larly useful when the block-encoded matrix is not necessarily Hermitian and hence, may not have well-defined
eigenvalues. We use this procedure to develop a more space-efficient variable stopping time matrix inversion
algorithm in chapter 4. Owing to the widespread use of singular values in a plethora of fields, we believe that
our QSVD procedure is of independent interest.

Let us define the sign function sign : R → R as follows:

sign(x) =


−1 x < 0

0 x = 0

1 x > 0.

(3.3.1)

Given a threshold singular value c, Low and Chuang [64] showed that there exists a polynomial approximation
to sign(c − x) (based on its approximation of the erf function). We use the result of Ref. [44], where such a
polynomial of even parity was considered. This is crucial, as for even polynomials, QSVT maps right (left)
singular vectors to right (left) singular vectors, which enables us to use the polynomial in [44] for singular value
discrimination.

Lemma 3.3.1 (Polynomial approximation to the sign function [64, 68, 44]). For any ε,∆, c ∈ (0, 1), there
exists an efficiently computable even polynomial Pε,∆,c(x) of degree l = O

(
1
∆ log(1/ε)

)
such that
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1. ∀x ∈ [0, 1] : |Pε,∆,c(x)| ≤ 1

2. ∀x ∈ [0, 1] \
(
c− ∆

2 , c+
∆
2

)
: |Pε,∆,c(x)− sign(c− x)| ≤ ε

Therefore, given a matrix A with singular values between [0, 1], we can use QSVT to implement Pε,∆,c(A)
which correctly distinguishes between singular values of A whose value is less than c−∆/2 and those whose value
is greater than c+∆/2. For our purposes, we shall consider that we are given UA, which is an (α, a, ε) block-
encoding of a matrix A. Our goal would be to distinguish whether a certain singular value σ satisfies 0 ≤ σ ≤ φ
or 2φ ≤ σ ≤ 1. Since UA (approximately) implements A/α, the task can be rephrased as distinguishing whether
a singular value of A/α is in [0, φ/α] or in [2φ/α, 1]. For this, we develop a robust version of quantum singular
value discrimination (QSV D(ϕ, δ)), which indicates the precision ε required to commit an error that is at most
δ.

Theorem 3.3.2 (Quantum Singular Value Discrimination using QSVT). Suppose A ∈ CN×N is an s-qubit
operator (where N = 2s) with singular value decomposition A =

∑
j∈[N ] σj |uj⟩⟨vj | such that all σj lie in the

range [0, 1]. Let φ ∈
(
0, 12

)
and δ ∈ (0, 1] be some parameters. Suppose that for some α ≥ 2 and ε satisfying

ε = o

(
δφ

log(1/δ)

)
we have access to UA, an (α, a, ε)-block-encoding of A implemented in cost TA. Then there exists a quantum
algorithm QSV D(φ, δ) which implements a (1, a+1, δ)-block-encoding of some (s+1)-qubit operator D ∈ C2N×2N

satisfying the following constraints for all j ∈ [N ]:

• σj ≤ φ =⇒ D |0⟩ |vj⟩ = |0⟩ |vj⟩

• σj ≥ 2φ =⇒ D |0⟩ |vj⟩ = |1⟩ |vj⟩

This algorithm has a cost of

O
(
α

φ
log

(
1

δ

)
TA

)
.

Proof. We invoke Lemma 3.3.1 with parameters ε′ := δ
2 , c := 3φ

2α and ∆ := φ
2α , to construct an even polynomial

P := Pε′,∆,c of degree n := O
(

α
φ log

(
1
ε′

))
, which is an ε′-approximation of f(x) := sign

(
3φ
2α − x

)
for x ∈

[
0, φα

]
∪[

2φ
α , 1

]
. Invoking Theorem 2.5.4 with P and UA, we get UB – a (1, a + 1, γ)-block-encoding of B := P (A/α),

implemented in cost O(nTA), where ε must satisfy ε ≤ αγ/2n.
Now consider the following unitary W that acts on s+ a+ 2 qubits:

W := SWAP†[s,s+a+1](H ⊗ Is+a+1) (C-UB) (H ⊗ Is+a+1)SWAP[s,s+a+1]

W is the required block-encoding of D, and SWAP[l,r] sequentially swaps adjacent qubits with indices in
range [l, r] effectively moving qubit indexed l to the right of qubit r. (where qubits are zero-indexed, with
higher indices for ancillas). Let B̃ be the top-left block of UB (therefore

∥∥∥B − B̃
∥∥∥ ≤ γ). Then we can extract

D̃, the top-left block of W as follows:

D̃ =
(
⟨0|⊗a+1 ⊗ Is+1

)
SWAP†[s,s+a+1] (|+⟩⟨+| ⊗ Is+a+1 + |−⟩⟨−| ⊗ UB) SWAP[s,s+a+1]

(
|0⟩⊗a+1 ⊗ Is+1

)
= |+⟩⟨+| ⊗ Is + |−⟩⟨−| ⊗ B̃

Let us define index sets L,R ⊆ [N ] where L := {j ∈ [N ] | σj ≤ φ} and R := {j ∈ [N ] | σj ≥ 2φ}; and the
corresponding subspace projections ΠL :=

∑
j∈L |vj⟩⟨vj |, ΠR :=

∑
j∈R |vj⟩⟨vj |, and Π⊥ := Is −ΠL −ΠR. Using

these we pick our required operator D as follows:

D := I ⊗ΠL +X ⊗ΠR + D̃(I ⊗Π⊥)

That is, D behaves as expected on the required subspace, and acts identical to D̃ on the remaining space. The
error in the block-encoding can be computed as∥∥∥D − D̃

∥∥∥ =
∥∥∥I ⊗ΠL +X ⊗ΠR + D̃(I ⊗Π⊥)− D̃

∥∥∥
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=
∥∥∥I ⊗ΠL +X ⊗ΠR − D̃(I ⊗ (ΠL +ΠR))

∥∥∥
=
∥∥∥(I ⊗ Is − D̃)(I ⊗ΠL) + (X ⊗ Is − D̃)(I ⊗ΠR)

∥∥∥
=
∥∥∥(|−⟩⟨−| ⊗ (Is − B̃)

)
(I ⊗ΠL)−

(
|−⟩⟨−| ⊗ (Is + B̃)

)
(I ⊗ΠR)

∥∥∥
=
∥∥∥(Is − B̃)ΠL − (Is + B̃)ΠR

∥∥∥
=
∥∥∥(Is −B)ΠL − (Is +B)ΠR + (B − B̃)(ΠL −ΠR)

∥∥∥
≤ ∥(Is − P (A/α))ΠL − (Is + P (A/α))ΠR∥+

∥∥∥B − B̃
∥∥∥∥ΠL −ΠR∥

≤ ε′ + γ

We can choose γ = δ/2, therefore

ε ≤ αδ

4n
= O

(
δφ

log
(
1
δ

))

In chapter 4, we develop a variable stopping time quantum algorithm for matrix inversion using QSVT. In
order to recast the usual matrix inversion to the VTAA framework, we need to be able to apply this algorithm to
specific ranges of the singular values of the matrix. This is achieved by applying a controlled QSVD algorithm,
to determine whether the input singular vector corresponds to an singular value less than (or greater than)
a certain threshold. Based on the outcome of controlled QSVD, the standard inversion algorithm is applied.
These two steps correspond to sub-algorithms Aj of the VTAA framework.

In prior works such as Refs. [45, 46, 35], gapped phase estimation (GPE) was used to implement this. GPE re-
quires an additional register of O(log(κ) log(1/δ)) qubits to store the estimated phases. For the whole VTAA pro-
cedure, log κ such registers are needed. As a result, substituting GPE with QSVD, we save O

(
log2(κ) log(1/δ)

)
qubits.

3.4 Negative Powers of Matrices using QSVT
We consider the problem: given an approximate block-encoding of a matrix A, we need to prepare a block-
encoding of A−c, where c ∈ (0, 1). This procedure will be used to develop algorithms for ℓ2-regularized versions
of GLS. We will directly use the results of [42].

Lemma 3.4.1 (Polynomial approximations of negative power functions, [63], Corollary 67). Let ε, δ ∈ (0, 12 ], c >

0 and let f(x) := δc

2 x
−c, then there exist even/odd polynomials Pc,ε,δ, P

′
c,ε,δ ∈ R[x] such that ∥Pc,ε,δ − f∥[δ,1] ≤ ε,

∥Pc,ε,δ∥[−1,1] ≤ 1 and
∥∥∥P ′

c,ε,δ − f
∥∥∥
[δ,1]

≤ ε,
∥∥∥P ′

c,ε,δ

∥∥∥
[−1,1]

≤ 1. Moreover the degree of the polynomials are

O
(

max(1,c)
δ log

(
1
ε

))
.

Theorem 3.4.2 (Negative fractional powers of a normalized matrix using QSVT). Let c ∈ (0, 1) be some
constant and δ ∈ (0, 1] Let A be a normalized matrix with non-zero singular values in the range [1/κ, 1]. Let UA

be a (α, a, ε)-block-encoding of a matrix A, implemented in time TA such that α ≥ 2 and

ε = o

(
δ

κc+1 log(κ/δ)

)
Then we can construct a (2κc, a+ 1, δ)-block-encoding of A−c at a cost of

O
(
ακ log

(κ
δ

)
TA

)
.

Proof. From Lemma 3.4.1, using ∆ := 1
κα and an appropriate φ ∈ (0, 12 ], we get an even QSP polynomial

P := Pc,φ,∆ which is φ-close to f(x) := 1
2κcαcxc , and has degree n such that n = O

(
ακ log

(
1
φ

))
. Therefore

∥f(A/α)− P (A/α)∥ ≤ φ.
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Using Theorem 2.5.4 we can construct UP , a (1, a + 1, γ)-block-encoding of P (A/α), given that ε ≤ αγ
2n .

Then from triangle inequality it follows that it is a (1, a + 1, φ + γ)-block-encoding of f(A/α). And because
f(A/α) = A−c

2κc , UP can be re-interpreted as a (2κc, a + 1, 2κc(φ + γ))-block-encoding of A−c. We therefore
choose φ = γ = δ

4κc , and choose ε as

ε = o

(
α
δ

4κc
1

ακ log(4κc/δ)

)
= o

(
δ

κc+1 log(κ/δ)

)

Having discussed the necessary algorithmic primitives, we are now in a position to design quantum algorithms
for linear regression with general ℓ2-regularization. We will first deal with ordinary least squares in chapter 4,
followed by weighted and generalized least squares with regularization in chapter 5.
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Chapter 4

Quantum Linear Systems Algorithms

Quantum linear systems (QLS) are perhaps one of the most explored topics in quantum algorithms literature.
This began with the HHL algorithm (named so after the authors’ initials), and has seen significant interest ever
since. The vanilla problem inputs a quantum encoding of a matrix A ∈ Rm×n and a quantum state proportional
to a vector b ∈ Rm and requires that we output a quantum state proportional to the solution x of the equation
Ax = b. This can be further generalized, and regularized. These problems have been explored in various
quantum input models, and under various constraints.

To put things in perspective, we begin this chapter by introducing the HHL algorithm, followed by an
adiabatic quantum algorithm for solving QLS by Lin and Tong [69]. Then we develop a variable-time quantum
linear systems algorithm (QLSA) using the improved VTAA technique and QSVT. Our algorithm gives a linear
dependence in the condition number, and unlike the previous work by Chakraborty et al. [35], uses QSVT
instead of Hamiltonian simulation, and requires fewer ancillary qubits. We will then use this algorithm we
develop in the next chapter to develop an algorithms for the regularized ordinary, weighted and generalized
least squares problems.

4.1 Harrow-Hassidim-Lloyd (HHL) Algorithm
This algorithm deals with the quantum version of the following problem. Given a Hermitian n × n matrix A
and a unit vector b, find the vector x satisfying Ax = b. The algorithm assumes access to b as a quantum
state |b⟩ =

∑
i bi |i⟩, which can be prepared by some controlled rotations. Suppose A =

∑
j λj |vj⟩ ⟨vj | ;∀j, λj ∈

[−1, 1κ ] ∪ [ 1κ , 1], where κ is the condition number of A. The quantum version of the problem requires us to
prepare a state |x̃⟩ such that

∥|x̃⟩ − |x⟩∥ ≤ ε.

Here

|x⟩ = A−1 |b⟩
∥A−1 |b⟩∥

is the true solution to the linear system. The HHL algorithm uses phase estimation and controlled rotations
for the task. First we apply phase estimation on A along with |b⟩ using controlled Hamiltonian simulation to
get ∑

j

cj |vj⟩ |λ̃j⟩w |0⟩a ,

where {λ̃j} are the approximate eigenvalues of A. Next we want to transfer the contents of the register w to
the phase of register a. This can be easily done by applying the arcsin function to the contents of the register
and then using Theorem A.1.1. The transformation looks like

∑
j

cj |vj⟩ |λ̃j⟩ |0⟩ 7−→
∑
j

cj |vj⟩ |
1

π
arcsin

(
c

λ̃j

)
⟩ |0⟩ (4.1.1)

7−→
Theorem A.1.1

∑
j

cj |vj⟩ |
1

π
arcsin

(
c

λ̃j

)
⟩

[
c

λ̃j
|0⟩+

√
1− c2

λ̃2j
|1⟩

]
(4.1.2)
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Uncomputing gives us the desired state

c
∑
j

cj

λ̃j
|vj⟩ |0⟩ |0⟩+ |⊥⟩ ,

where |⊥⟩ has no component over I ⊗ |0⟩ ⟨0|. Therefore, post-selecting on |0⟩ in the last register leaves |x̃⟩
in the first register.

4.2 Adiabatic Quantum Algorithm for Solving Linear Systems
Lin and Tong [69] gave an adiabatic quantum algorithm to solve linear systems. It allows us to prepare a target
eigenstate of a given Hamiltonian if we have an initial state with a non-trivial overlap with the target eigenstate
and there is a reasonable lower bound known on the spectral gap. They also discretise the algorithm for d-sparse
matrices using a Hamiltonian simulation subroutine.

Assume access to a d-sparse matrix A ∈ CN×N via oracles OA,1, OA,2 as

OA,1 |j⟩ |l⟩ = |j⟩ |v(j, l)⟩ , (4.2.1)
OA,2 |j⟩ |k⟩ |z⟩ = |j⟩ |k⟩ |Ajk ⊕ z⟩ , (4.2.2)

where j, k, l, z ∈ [N ] and v(j, l) is the row index of the l-th non-zero element in the j-th column. Also assume
access to an oracle OB such that

OB |0⟩ = |b⟩ , (4.2.3)

where |b⟩ ∈ CN . This allows us to prepare a (d, n + 2, 0)-block-encoding of A. The task is to prepare the
quantum state

|x⟩ = A−1 |b⟩
||A−1 |b⟩ ||

,

where |x⟩ is the quantum state proportional to the solution of the linear system Ax = b.
They assume that the singular values of A are contained in

[
1
κ , 1
]
, where κ is the condition number of A.

The algorithm goes as follows.
Define

Qb = I − |b⟩ ⟨b| (4.2.4)

The initial Hamiltonian is

H0 :=

(
0 Qb

Qb 0

)
= σx ⊗Qb. (4.2.5)

The final Hamiltonian is

H1 :=

(
0 AQb

QbA 0

)
= |0⟩ ⟨1| ⊗AQb + |1⟩ ⟨0| ⊗QbA. (4.2.6)

Note that the null space of H1 is spanned by |0⟩ |x⟩ and |1⟩ |b⟩. The rest of the spectrum is separated from
0 by a gap of 1

κ . Then the adiabatic evolution is given by

H(f) = (1− f)H0 + fH1. (4.2.7)

Using the vanilla (linear) schedule f(s) = s gives a time complexity of O(κ2/ϵ). Using the AQC(p) schedule
(for p ∈ (1, 2)), given by

f(s) =
κ

κ− 1

(
1−

(
1 + s(κp−1 − 1)

) 1
1−p

)
, (4.2.8)

the time complexity can be reduced to O(κ/ϵ), which is optimal in κ but not in ϵ. Using the AQC(exp)
schedule, the time complexity can be further reduced to O

(
κ log2(κ) log4

(
log κ
ϵ

))
, which is near-optimal in both

κ and ϵ, although with a high constant overhead (numerically shown in their paper.) To overcome this they
developed quantum eigenstate filtering, which they use to accelerate AQC(p) and reduce the query complexity
in precision to log

(
1
ε

)
.
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4.3 Variable Time Quantum Linear Systems Algorithm using QSVT
Matrix inversion by QSVT applies a polynomial approximation of f(x) = 1/x, satisfying the constraints laid
out in Theorem 2.5.1. Here, we make use of the result of [44] to implement A+. We adapt their result to the
scenario where we have an approximate block-encoding of A as input. Finally, we convert this to a variable
stopping time quantum algorithm and apply VTAA to obtain a linear dependence on the condition number of
A.

Lemma 4.3.1 (Matrix Inversion polynomial (Appendix C of [44])). Given κ ≥ 1, ε ∈ R+, there exists an odd
QSP polynomial PMI

ε,κ of degree O(κ log(κ/ε)), which is an ε
2κ approximation of the function f(x) = 1

2κx in the
range D := [−1,− 1

κ ] ∪ [ 1κ , 1]. Also in this range PMI
ε,κ is bounded from above by 1, i.e. ∀x ∈ D :

∣∣PMI
ε,κ (x)

∣∣ ≤ 1.

Theorem 4.3.2 (Inverting Normalized Matrices using QSVT). Let A be a normalized matrix with non-zero
singular values in the range [1/κA, 1] for some κA ≥ 1. Let δ ∈ (0, 1]. For some ε = o

(
δ

κ2
A log(κA/δ)

)
and α ≥ 2,

let UA be an (α, a, ε)-block-encoding of A, implemented in time TA. Then we can implement a (2κA, a + 1, δ)-
block-encoding of A+ at a cost of

O
(
κAα log

(κA
δ

)
TA

)
.

Proof. We use the matrix inversion polynomial defined in Lemma 4.3.1, P := PMI
ϕ,κ for this task, with κ = κAα

and an appropriate ϕ. This has a degree of n := O(κAα log (κAα/ϕ)). We invoke Theorem 2.5.4 to apply QSVT
using the polynomial P above, block-encoding UA, and an appropriate error parameter γ such that ε ≤ αγ/2n,
to get the unitary U , a (1, a+1, γ)-block-encoding of P (A/α). As P is a (ϕ/2κ)-approximation of f(x) := 1/2κx,
we have

∥f(A/α)− P (A/α)∥ ≤ ϕ

2κ
,

which implies U is a (1, a + 1, γ + ϕ/2κ)-block-encoding of f(A/α). And because f(A/α) = αA+

2κ = A+/2κA,
we can re-interpret U as a (2κA, a + 1, 2κAγ + ϕ/α)-block-encoding of A+. Choosing 2κAγ = ϕ/α = δ/2, the
final block-encoding has an error of δ. This gives us ϕ = αδ/2 and γ = δ/4κA, and

ε ≤ αγ

2n
=

αδ

8κAn
= O

(
δ

κ2A log(κA/δ)

)

Next, we design a map W (γ, δ) that uses QSVT to invert the singular values of a matrix if they belong
to a particular domain. This helps us recast the usual matrix inversion algorithm as a variable-stopping-time
algorithm and will be a key subroutine for boosting the success probability of this algorithm using VTAA. This
procedure was also used in Refs. [46, 35] for the quantum linear systems algorithms.

Theorem 4.3.3 (Efficient inversion of block-encoded matrix). Let A be a normalized matrix with non-zero
singular values in the range [1/κ, 1], for some κ ≥ 1. Let δ ∈ (0, 1]; 0 < γ ≤ 1. Let UA be an (α, a, ε)-block-

encoding of A implemented in time TA, such that α ≥ 2 and ε = o

(
δγ2

log( 1
δγ )

)
. Then for any quantum state

|b⟩ that is spanned by the left singular vectors of A corresponding to the singular values in the range [γ, 1], there
exists a unitary W (γ, δ) that implements

W (γ, δ) : |0⟩F |0⟩Q |b⟩I 7→ 1

amax
|1⟩F |0⟩Q f(A) |b⟩I + |0⟩F |⊥⟩QI (4.3.1)

where amax = O(κA) is a constant independent of γ, |⊥⟩QI is an unnormalized quantum state orthogonal to
|0⟩Q and ∥f(A) |b⟩ −A+ |b⟩∥ ≤ δ. Here F is a 1-qubit flag register, Q is an α-qubit ancilla register, and I is
the logN -qubit input register. This unitary has a cost

O
(
α

γ
log

(
1

γδ

)
TA

)
(4.3.2)

Proof. Since we only need to invert the singular values in a particular range, we can use the procedure in
Theorem 4.3.2 with κA modified to the restricted range. That gives us the description of a quantum circuit
W̃ (γ, δ) that can implement the following map

W̃ (γ, δ) : |b⟩I |0⟩Q 7→ γ

2
f(A) |b⟩I |0⟩Q + |⊥⟩QI ,
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where |⊥⟩ is an unnomalized state with no component along |0⟩Q. This has the same cost as Equation 4.3.2.
Here ∥f(A) |ψ⟩ −A+ |ψ⟩∥ ≤ δ whenever |ψ⟩ is a unit vector in the span of the singular vectors of A corresponding
to the singular values in [γ, 1]. This follows from the sub-multiplicativity property of the matrix-vector product.

Next, we must transform the amplitude of the good part of the state to Θ(κ), independent of γ. To achieve
this, we will have to flag it with an ancillary qubit to use a controlled rotation to modify the amplitude. Thus
we add a single qubit |0⟩F register and flip this register controlled on register Q being in the state |0⟩ (the good
part). This gives us the transformation

W̃ ′(γ, δ) : |0⟩F |b⟩I |0⟩Q 7→ γ

2
|1⟩F f(A) |b⟩I |0⟩Q + |0⟩F |⊥⟩QI

Then we use a controlled rotation to replace the amplitude γ/2 with some constant a−1
max which is independent

of γ, which is achieved by introducing the relevant phase to the flag space

|1⟩F 7→ 2

γamax
|1⟩F +

√
1− 4

γ2a2max

|0⟩F .

This gives us the desired W (γ, δ) as in Equation 4.3.1.

Given such a unitary W (γ, δ), Ref. [35] laid out a procedure for a variable time quantum algorithm A that
takes as input the block encoding of an N × d matrix A, and a state preparation procedure Ub : |0⟩⊗n 7→ |b⟩,
and outputs a quantum state that is a bounded distance away from A+ |b⟩ /∥A+ |b⟩∥. In order to determine the
branches of the algorithm on which to apply VTAA at a particular iteration, [46, 35, 45] use the technique of
gapped phase estimation, which given a unitary U , a threshold ϕ and one of its eigenstate |λ⟩, decides if the
corresponding eigenvalue is a bounded distance below the threshold, or a bounded distance above it. In this
work, we replace gapped phase estimation with the QSVD algorithm (Theorem 3.3.2) which can be applied di-
rectly to any block-encoded (not necessarily Hermitian) matrix A, and allows for saving on O

(
log2(κ/δ)

)
qubits.

The Variable time Algorithm: This algorithm will be a sequence ofm sub-algorithms A = Am ·Am−1 ·. . .A1,
where m = ⌈log κ⌉+ 1. The overall algorithm acts on the following registers:

• m single qubit clock registers Ci : i ∈ [m].

• An input register I, initialized to |0⟩⊗s.

• Ancillary register space Q for the block encoding of A, initialized to |0⟩⊗a.

• A single qubit flag register |0⟩F used to flag success of the algorithm.

Once we have prepared the above state space, we use the state preparation procedure to prepare the state
|b⟩. Now we can define how each Aj acts on the state space. Let ε′ = δ

amaxm
. The action of Aj can be broken

down into two parts:

1. If Cj−1 . . . C1 is in state |0⟩⊗(j−1), apply QSVD(2−j , ε′), (Theorem 3.3.2) to the state |b⟩. The output is
to be written to the clock register Cj .

2. If the state of Cj is now |1⟩, apply W (2−j , ε′) to I ⊗ F ⊗Q.

Additionally, we would need algorithms A′ = A′
m · · · A′

1 which are similar to A, except that in Step 2, it
implements W ′ which sets the flag register to 1. That is,

W ′ |b⟩I |0⟩F |0⟩Q = |b⟩I |1⟩F |0⟩Q .

Now we are in a position to define the variable time quantum linear systems algorithm using QSVT.

Theorem 4.3.4 (Variable Time Quantum Linear Systems Algorithm Using QSVT). Let ε, δ > 0. Let A is a
normalized N × d matrix such that its non-zero singular values lie in [1/κ, 1]. Suppose that for

ε = o

(
δ

κ3 log2
(
κ
δ

)) ,
we have access to UA which is an (α, a, ε)-block-encoding of A, implemented with cost TA. Let |b⟩ be a state
vector which is spanned by the left singular vectors of A. Suppose there exists a procedure to prepare the state
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|b⟩ in cost Tb. Then there exists a variable time quantum algorithm that outputs a state that is δ-close A+|b⟩
∥A+|b⟩∥

at a cost of
O
(
κ log κ

(
αTA log

(κ
δ

)
+ Tb

))
(4.3.3)

using O(log (κ)) additional qubits.

Proof. The correctness of the algorithm is similar to that of Refs. [46, 35], except here, we use QSVD instead
of gapped phase estimation. According to Lemma 2.6.2, we need Tmax (the maximum time any of the sub-
algorithms Aj take), ∥T∥22 (the ℓ2-averaged stopping time of the sub-algorithms), and √

psucc (the square root
of the success probability.) Now each sub-algorithm consists of two steps, implementing QEVD with precision
2−j and error ε′, followed by W (2−j , ε′). From Theorem 3.3.2, the first step costs

O
(
αTA2

j log

(
1

ε′

))
,

and the cost of implementing W (2−j , ε′) is as described in Equation 4.3.2. Thus the overall cost of Aj ,
which is the sum of these two costs, turns out to be

O
(
αTA2

j log

(
2j

ε′

))
(4.3.4)

Note that the time tj required to implement Aj . . .A1 is also the same as Equation 4.3.4. Also,

Tmax = max
j

tj

= max
j

O
(
αTA2

j log

(
2j

ε′

))
= O

(
αTAκ log

( κ
ε′

))
= O

(
αTAκ log

(
κ log (κ)

δ

))
.

The ∥T∥22 is dependent on the probability that A stops at the jth step. This is given by

pj =
∥∥∥ΠCjAj . . .A1 |ψ⟩I |0⟩CFPQ

∥∥∥2, where ΠCj is the projector on |1⟩Cj
, the jth clock register. From this, ∥T∥22

can be calculated as

∥T∥22 =
∑
j

pjt
2
j

=
∑
j

∥∥∥ΠCjAj . . .A1 |ψ⟩I |0⟩CFPQ

∥∥∥2t2j
=
∑
k

|ck|2
∑
j

(∥∥∥ΠCjAj . . .A1 |vk⟩I |0⟩CFPQ

∥∥∥2t2j)

= O

(
α2T 2

A

∑
k

log2
(

1

σkε′

)
|ck|2

σ2
k

)

Therefore

∥T∥2 = O

αTA log

(
κ log κ

δ

)√√√√∑
k

|ck|2

σ2
k

. (4.3.5)

Next we calculate the success probability.

√
psucc =

∥∥∥∥ΠF
A−1

αmax
|b⟩I |ϕ⟩CFPQ

∥∥∥∥+O(mε′)

=
1

αmax

√√√√∑
j

|cj |2

σ2
j

+O
(

δ

αmax

)
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= Ω

 1

κ

√√√√∑
j

|cj |2

σ2
j


Given these, we can use Lemma 2.6.2 to write the final complexity of matrix inversion with VTAA:

Tmax + Tb +
(∥T∥2 + Tb) log (T

′
max)√

psucc
= O

(
κ log κ

(
αTA log

(κ
δ

)
+ Tb

))
The upper bound on the precision required for the input block-encoding, ε, can be calculated from the bounds
on the precisions for W (κ, ε′) (Theorem 4.3.3) and QSVD(κ, ε′) (Theorem 3.3.2) as follows:

ε = o

(
min

(
ε′

κ2 log
(
κ
ε′

) , ε′

κ log
(

1
ε′

))) = o

(
ε′

κ2 log
(
κ
ε′

)) = o

(
δ

κ3 log2
(
κ
δ

))

The overall complexity is better by a log factor and requires O
(
log2(κ/δ)

)
fewer additional qubits as com-

pared to the variable time algorithms in Refs. [46, 35].
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Chapter 5

Regularized Quantum Regression

5.1 Quantum Ordinary Least Squares with General Tikhonov Regu-
larization

In this section, we derive the main results of our paper, namely quantum algorithms for quantum ordinary
least squares (OLS), quantum weighted least squares (WLS) and quantum generalized least squares (GLS) with
ℓ2-regularization.

5.1.1 Quantum Ordinary Least Squares
Given N data points {ai, bi}Ni=1 such that ai ∈ Rd and bi ∈ R, the objective of linear regression is to find x ∈ Rd

that minimizes the loss function

LO =

N∑
j=1

(xTai − bi)
2. (5.1.1)

Consider theN×dmatrix A (known as the data matrix) such that the ith row of A is the vector ai transposed and
the column vector b = (b1 · · · bN )T . Then, the solution to the OLS problem is given by x = (ATA)−1AT b = A+b.

For the ℓ2-regularized version of the OLS problem, a penalty term is added to its objective function. This
has the effect of shrinking the singular values of A which helps overcome problems such as rank deficiency and
overfitting for the OLS problem. The loss function to be minimized is of the form

∥Ax− b∥22 + ∥Lx∥22, (5.1.2)

where L is the N × d penalty matrix and λ > 0 is the optimal regularizing parameter. The solution x ∈ Rd

satisfies
x = (ATA+ λLTL)−1AT b. (5.1.3)

Therefore, for quantum ordinary least squares with general ℓ2-regularization, we assume that we have access
to approximate block-encodings of the data matrix A, L and a procedure to prepare the quantum state |b⟩ =∑N

j=1 bj |j⟩ /∥b∥. Our algorithm outputs a quantum state that is close to

|x⟩ = (ATA+ λLTL)−1AT |b⟩
∥(ATA+ λLTL)−1AT |b⟩∥

. (5.1.4)

In order to implement a quantum algorithm that implements this, a straightforward approach would be the
following: We first construct block-encodings of ATA and LTL, given block encodings of A and L, respectively
(Using Lemma 3.2.4). We could then implement a block-encoding of ATA+ λLTL using these block encodings
(By Lemma 3.2.2). On the other hand, we could also prepare a quantum state proportional to AT |b⟩ by using
the block-encoding for A and the unitary preparing |b⟩. Finally, using the block encoding of ATA+ λLTL, we
could implement a block-encoding of (ATA+ λLTL)−1 (using Theorem 4.3.2) and apply it to the state AT |b⟩.
Although this procedure would output a quantum state close to |x⟩, it is not efficient. It is easy to see that
the inverse of ATA+ λLTL, would be implemented with a complexity that has a quadratic dependence on the
condition numbers of A and L. This would be undesirable as it would perform worse than the unregularized
quantum least squares algorithm, where one is able to implement A+ directly. However, it is possible to design
a quantum algorithm that performs significantly better than this.
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The first observation is that it is possible to recast this problem as finding the pseudoinverse of some
augmented matrix. Given the data matrix A ∈ RN×d, the regularizing matrix L ∈ RN×d, let us define the
following augmented matrix

AL :=

(
A 0√
λL 0

)
. (5.1.5)

It is easy to see that the top left block of A+
L = (ATA+ λLTL)−1AT , which is the required linear transfor-

mation to be applied to b. Consequently, our strategy would be to implement a block-encoding of AL, given
block-encodings of A and L. Following this, we use matrix inversion by QSVT to implement A+

L |b⟩ |0⟩. The
first register is left in the quantum state given in Equation 5.1.4.

From this, it is clear that the complexity of our quantum algorithm would depend on the effective condition
number of the augmented matrix AL. In this regard, we shall assume that the penalty matrix L is a good
regularizer. That is, L is chosen such that it does not have zero singular values (positive definite). This is a
fair assumption as if L has only non-zero singular values, the minimum singular value of AL is guaranteed to
be lower bounded by the minimum singular value of L. This ensures that the effective condition number of AL

depends on κL, even when the data matrix A has zero singular values and ATA is not invertible. Consequently,
this also guarantees that regularized least squares provide an advantage over their unregularized counterparts.

Next, we obtain bounds on the effective condition number of the augmented matrix AL for a good regularizer
L via the following lemma:

Lemma 5.1.1 (Condition number and Spectral Norm of AL). Let the data matrix A and the positive definite
penalty matrix L have spectral norms ∥A∥ and ∥L∥, respectively. Furthermore, suppose their effective condition
numbers be upper bounded by κA and κL. Then the ratio between the maximum and minimum (non-zero)
singular value of AL is upper bounded by

κ = κL

(
1 +

∥A∥√
λ∥L∥

)
We can also bound the spectral norm as

∥AL∥ = Θ
(
∥A∥+

√
λ∥L∥

)
Proof. To bound the spectral norm and condition number of AL, consider the eigenvalues of the following
matrix:

AT
LAL =

(
ATA+ λLTL 0

0 0

)
This implies that the non-zero eigenvalues of AT

LAL are the same as those of ATA+λLTL. Therefore, using
triangle inequality, the spectral norm of AL can be upper-bounded as follows:

∥AL∥ =
√∥∥AT

LAL

∥∥ =
√
∥ATA+ λLTL∥ ≤

√
∥ATA∥+ λ∥LTL∥ =

√
∥A∥2 + λ∥L∥2 ≤ ∥A∥+

√
λ∥L∥

Similarly ∥AL∥ ≥ ∥A∥ and ∥AL∥ ≥
√
λ∥L∥, which effectively gives the tight bound for ∥AL∥.

As LTL is positive definite, we have that its minimum singular value is σmin(L) = ∥L∥/κL. And we also
know that ATA is positive semidefinite, so by Weyl’s inequality, the minimum singular value of AL is lower
bounded by

σmin (AL) ≥
√
σmin (A)

2
+ λσmin (L)

2 ≥

√
λ
∥L∥2

κ2L
=

√
λ
∥L∥
κL

Thus,
σmax (AL)

σmin (AL)
≤ κ = κL

(
1 +

∥A∥√
λ∥L∥

)

In the theorems and lemmas for regularized quantum linear regression and its variants that we develop in
this section, we consider that L is a good regularizer in order to provide a simple expression for κ. However, this
is without loss of generality. When L is not a good regularizer, the expressions for the respective complexities
will remain unaltered, except that κ would now correspond to the condition number of the augmented matrix.
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Now it might be possible that |b⟩ does not belong to the row space of (ATA+λLTL)−1AT which is equivalent
to saying |b⟩ |0⟩ may not lie in row(A+

L). However, it is reasonable to expect that the initial hypothesis of
the underlying model being close to linear is correct. That is, we expect |b⟩ to have a good overlap with
row

(
A+

L

)
= col (AL). The quantity that quantifies how far the model is from being linear is the so called

normalized residual sum of squares. For ℓ2-regularized ordinary least squares, this is given by

SO =

∥∥(I −Πcol(AL)) |b⟩ |0⟩
∥∥2

∥|b⟩∥2
= 1−

∥∥Πcol(AL) |b⟩ |0⟩
∥∥2. (5.1.6)

If the underlying data can indeed be fit by a linear function, SO will be low. Subsequently, we assume that
SO = 1−

∥∥Πcol(AL) |b⟩ |0⟩
∥∥2 ≤ γ < 1/2. This in turn implies that

∥∥Πcol(AL) |b⟩ |0⟩
∥∥2 = Ω(1), implying that the

data can be reasonably fit by a linear model.i
Now we are in a position to present our quantum algorithm for the quantum least squares problem with

general ℓ2-regularization. We also present an improved quantum algorithm for the closely related quantum ridge
regression, which is a special case of the former.

Theorem 5.1.2 (Quantum Ordinary Least Squares with General ℓ2-Regularization). Let A,L ∈ RN×d be the
data and penalty matrices with effective condition numbers κA and κL respectively, and λ ∈ R+ be the regression
parameter. Let UA be a (αA, aA, εA)-block-encoding of A implemented in time TA and UL be a (αL, aL, εL)-
block-encoding of L implemented in time TL. Furthermore, suppose Ub be a unitary that prepares |b⟩ in time Tb
and define

κ = κL

(
1 +

∥A∥√
λ∥L∥

)
Then for any δ ∈ (0, 1) such that

εA,
√
λεL = o

(
δ

κ3 log2
(
κ
δ

)) (5.1.7)

we can prepare a state that is δ-close to (
ATA+ λLTL

)−1
AT |b⟩∥∥∥(ATA+ λLTL)

−1
AT |b⟩

∥∥∥
with probability Θ(1), at a cost of

O

(
κ log κ

((
αA +

√
λαL

∥A∥+
√
λ∥L∥

)
log
(κ
δ

)
(TA + TL) + Tb

))
(5.1.8)

using only O(log κ) additional qubits.

Proof. We invoke Lemma 3.2.7, to obtain a unitary U , which is a (αA +
√
λαL,max(aA, aL) + 2, εA +

√
λεL)-

block-encoding of the matrix AL, implemented at a cost of O(TA + TL). Note that in Lemma 3.2.7, A and L
are considered to be s-qubit operators. For N × d matrices, such that N, d ≤ 2s, we can pad them with zero
entries. Padding A and L with zeros may result in the augmented matrix AL having some zero rows between
A and L. However, this is also not an issue as we are only interested in the top left block of A+

L which remains
unaffected.

Note that U can be reinterpreted as a
(

αA+
√
λαL

∥AL∥ ,max(aA, aL) + 2, εA+
√
λεL

∥AL∥

)
-block-encoding of the nor-

malized matrix AL/∥AL∥. Furthermore, we can prepare the quantum state |b⟩ |0⟩ in time Tb. Now by using
Theorem 4.3.4 with U and an appropriately chosen δ specified above, we obtain a quantum state that is δ-close
to

(ATA+ λLTL)−1AT |b⟩
∥(ATA+ λLTL)−1AT |b⟩∥

in the first register.

In the above complexity, when L is a good regularizer, κ is independent of κA. κ can be made arbitrarily
smaller than κA by an appropriate choice of L. Thus the regularized version has significantly better time
complexity than the unregularized case. One such example of a good regularizer is in case of Quantum Ridge
Regression, where we use the identity matrix to regularize. The corollary below elucidates this.

iOur results also hold if we assume that SO ≤ γ for some γ ∈ (0, 1). That is,
∥∥Πcol(AL)

∥∥ ≥ 1 − γ. In such a scenario our

complexity to prepare A+
L |b, 0⟩ /

∥∥∥A+
L |b, 0⟩

∥∥∥ is re-scaled by 1/
√
1− γ.
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Corollary 5.1.3 (Quantum Ridge Regression). Let A be a matrix of dimension N × d with effective condition
number κA and λ ∈ R+ be the regression parameter. Let UA be a (α, a, ε)-block-encoding of A implemented in
time TA. Let Ub be a unitary that prepares |b⟩ in time Tb. If κ = 1 + ∥A∥/

√
λ then for any δ such that

ε = o

(
δ

κ3 log2
(
κ
δ

))

we can prepare a state δ-close to (
ATA+ λI

)−1
AT |b⟩∥∥∥(ATA+ λI)

−1
AT |b⟩

∥∥∥
at a cost of

O
(
log κ

(
αA√
λ
log
(κ
δ

)
TA + κTb

))
(5.1.9)

with probability Θ(1) using only O(log κ) additional qubits.

Proof. The identity matrix I is a trivial (1, 0, 0)-block-encoding of itself, and κI = 1. We invoke Theorem 5.1.2
with L = I to obtain the solution.

Being in the block-encoding framework allows us to express the complexity of our quantum algorithm in
specific input models such as the quantum data structure input model and the sparse access model. We express
these complexities via the following corollaries.

Corollary 5.1.4 (Quantum Ordinary Least Squares with ℓ2-Regularization in the Quantum Data Structure
Input Model). Let A,L ∈ RN×d with effective condition numbers κA, κL respectively. Let λ ∈ R+ and b ∈ RN .
Let κ be the effective condition number of the augmented matrix AL. Suppose that A, L and b are stored in a
quantum accessible data structure. Then for any δ > 0 there exists a quantum algorithm to prepare a quantum
state δ-close to (

ATA+ λLTL
)−1

AT |b⟩∥∥∥(ATA+ λLTL)
−1
AT |b⟩

∥∥∥
with probability Θ(1), at a cost of

O

(
κ

(
µA +

√
λµL

∥A∥+
√
λ∥L∥

)
polylog

(
Nd, κ,

1

δ
, λ

))
. (5.1.10)

Proof. Since b is stored in the data structure, for some εb > 0, we can prepare the state |b′⟩ that is εb-close
to |b⟩ =

∑
i bi |i⟩ /∥b∥ using Tb = O(polylog(N/εb)) queries to the data structure (see chapter 2.) Similarly,

for some parameters εA, εL > 0, we can construct a (µA, ⌈log(d+N)⌉, εA)-block-encoding of A using TA =
O(polylog(Nd/εA)) queries to the data structure and a (µL, ⌈log(d+N)⌉, εB)-block-encoding of L using TL =
O(polylog(Nd/εB)) queries.

We invoke Theorem 5.1.2 with a precision δ/2 by choosing εA and εL such that equation Equation 5.1.7 is
satisfied. This gives us a state that is δ/2-close to(

ATA+ λLTL
)−1

AT |b′⟩∥∥∥(ATA+ λLTL)
−1
AT |b′⟩

∥∥∥
To compute the final precision as δ, we use Lemma 3.1.5 by choosing εb = δ

2κ . The complexity can be
calculated by plugging in the relevant values in Equation 5.1.8

In the previous corollary µA = ∥A∥F and µL = ∥L∥F when the matrix A and L are stored in the data
structure. Similarly, µA = µp(A) and µL = µp(L) when the matrices A(p), A(1−p) and L(p), L(1−p) are stored in
the data structure.

Now we discuss the complexity of quantum ordinary least squares with ℓ2-regularization in the sparse access
input model. We call a matrix M as (sr, sc) row-column sparse if it has a row sparsity sr and column sparsity
sc.
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Corollary 5.1.5 (Quantum Ordinary least squares with ℓ2-regularization in the sparse access model). Let
A ∈ RN×d be (sAr , s

A
c ) row-column sparse, and similarly, let L ∈ RN×d be (sLr , s

L
c ) row-column sparse, with

effective condition numbers κA and κL respectively. Let λ ∈ R+ and δ > 0. Suppose there exists a unitary that
prepares |b⟩ at a cost, Tb. Then there is a quantum algorithm to prepare a quantum state that is δ-close to

(ATA+ λLTL)−1AT |b⟩
∥(ATA+ λLTL)−1AT |b⟩∥

with probability Θ(1), at a cost of

O

(
κ

(√
sAr s

A
c +

√
λsLr s

L
c

∥A∥+
√
λ∥L∥

)
polylog

(
Nd, κ,

1

δ
, λ

)
+ κ log κTb

)
. (5.1.11)

Proof. The proof is similar to Corollary 5.1.4 but with αA =
√
sAr s

A
c and αL =

√
sLr s

L
c .

5.2 Regularized Quantum Weighted And Generalized Least Squares
This technique of working with a augmented matrix will also hold for the other variants of ordinary least squares.
In this section, we begin by briefly describing these variants before moving on to designing quantum algorithms
for the corresponding problems.

Weighted Least Squares: For the WLS problem, each observation {ai, bi} is assigned some weight
wi ∈ R+ and the objective function to be minimized is of the form

LW :=
∑
j

wj(x
Taj − bj)

2. (5.2.1)

If W ∈ RN×N is the diagonal matrix with wi being the ith diagonal entry, then the optimal x satisfies

x = (ATWA)−1ATWb. (5.2.2)

The ℓ2-regularized version of WLS satisfies

x = (ATWA+ λLTL)−1ATWb (5.2.3)

Our quantum algorithm outputs a state that is close to

|x⟩ = (ATWA+ λLTL)−1ATW |b⟩
∥(ATWA+ λLTL)−1ATW |b⟩∥

(5.2.4)

given approximate block-encodings of A, W and L.
Much like Equation 5.1.5, finding the optimal solution reduces to finding the pseudo inverse of an augmented

matrix AL given by

AL :=

(√
WA 0√
λL 0

)
.

The top left block of A+
L = (ATWA + λLTL)−1AT

√
W , which is the required linear transformation to be

applied to the vector y =
√
Wb. The ratio between the minimum and maximum singular values of AL, κ, can

be obtained analogously to Lemma 5.1.1.
For the ℓ2-regularized WLS problem, normalized residual sum of squares is given by

SW =

∥∥(I −Πcol(AL)) |y⟩ |0⟩
∥∥2

∥|y⟩∥2
= 1−

∥∥Πcol(AL) |y⟩ |0⟩
∥∥2. (5.2.5)

Subsequently, we assume that SW = 1−
∥∥Πcol(AL) |y⟩ |0⟩

∥∥2 ≤ γ < 1/2. This in turn implies that
∥∥Πcol(AL) |y⟩ |0⟩

∥∥2 =
Ω(1), implying that the data can be reasonably fit by a linear model.

Generalized Least Squares. Similarly, we can extend this to GLS problem, where there the input data
may be correlated. These correlations are given by the non-singular covariance matrix Ω ∈ RN×N . The WLS
problem is a special case of the GLS problem, corresponding to when Ω is a diagonal matrix.
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The objective function to be minimized is

LΩ :=
∑
i,j

(Ω−1)ij(x
Tai − bi)(x

Taj − bj). (5.2.6)

The optimal x ∈ Rd satisfies
x = (ATΩ−1A)ATΩ−1b (5.2.7)

Similarly, the ℓ2-regularized GLS solver outputs x such that

x = (ATΩ−1A+ λLTL)ATΩ−1b. (5.2.8)

So, given approximate block-encodings of A, Ω and L a quantum GLS solver outputs a quantum state close to

|x⟩ = (ATΩ−1A+ λLTL)ATΩ−1 |b⟩
∥(ATΩ−1A+ λLTL)ATΩ−1 |b⟩∥

(5.2.9)

The augmented matrix AL is defined as

AL :=

(
Ω−1/2A 0√

λL 0

)
.

Then top left block of A+
L to the vector y = Ω−1/2b yields the optimal x. Thus the quantum GLS problem

with ℓ2-regularization first prepares Ω−1/2 |b⟩ |0⟩ and then uses the matrix inversion algorithm by QSVT to
implement A+

LΩ
−1/2 |b⟩ |0⟩. Analogous to OLS and WLS, we assume that the normalized residual sum of

squares SΩ ≤ γ < 1/2.

5.2.1 Regularized Quantum Weighted Least Squares
In this section, we derive the complexity of the ℓ2-regularized WLS problem. We assume that we have a diagonal
weight matrix W ∈ RN×N such that its smallest and largest diagonal entries are wmin and wmax, respectively.
This implies that ∥W∥ = wmax and κW = wmax/wmin. We take advantage of the fact that the matrix W is
diagonal and then apply controlled rotations to directly implement a block encoding of

√
WA. Additionally,

given a state preparation procedure for |b⟩, we can easily prepare a state proportional to
√
W |b⟩. We then use

Theorem 5.1.2 to solve QWLS.
We first formalize this idea in Theorem 5.2.1, assuming direct access to (i) a block encoding of B =

√
WA,

and (ii) a procedure for preparing the state |bw⟩ =
√
W |b⟩

∥√W |b⟩∥ . Subsequently, for the specific input models, we

show that we can indeed efficiently obtain a block-encoding of B and prepare the state |bw⟩.

Theorem 5.2.1 (Quantum Weighted Least Squares with General ℓ2-Regularization). Let A,L ∈ RN×d, be
the data and penalty matrix, with effective condition numbers κA and κL, respectively. Let λ ∈ R+ be the
regularizing parameter. Let W ∈ RN×N be a diagonal weight matrix with the largest and smallest diagonal
entries being wmax, wmin, respectively. Let UB be a (αB , aB , εB) block encoding of B :=

√
WA implemented in

time TB and let UL be a (αL, aL, εL) block encoding of L implemented in time TL, such that εB = o

(
δ

κ3 log2(κ
δ )

)
and εL = o

(
δ√

λκ3 log2(κ
δ )

)
. Let Ubw be a unitary that prepares

√
W |b⟩

∥√W |b⟩∥ in time Tbw . Define

κ := κL

(
1 +

√
wmax∥A∥√
λ∥L∥

)
Then for any δ > 0 we can prepare a quantum state that is δ-close to

(ATWA+ λLTL)−1ATW |b⟩
∥(ATWA+ λLTL)−1ATW |b⟩∥

with probability Θ(1), at a cost of

O

(
κ log κ

(
αB +

√
λαL

√
wmax∥A∥+

√
λ∥L∥

log
(κ
δ

)
(TB + TL) + Tbw

))
, (5.2.10)

using only O(log κ) additional qubits.
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Proof. We then invoke Theorem 5.1.2 with B and L as the data and regularization matrices, respectively. This
requires that εB , εL such that

εB +
√
λεL = o

(
δ

κ3 log2
(
κ
δ

)) .
Thus, we get the upper bounds on the precision εB , εL required. This gives us a quantum state δ-close to

(ATWA+ λLTL)−1ATW |b⟩
∥(ATWA+ λLTL)−1ATW |b⟩∥

.

Next, we construct the block encodings for
√
WA and the state

√
W |b⟩

∥√W |b⟩∥ efficiently in the quantum data

structure input model. This construction would also apply to the sparse access input model with slight modifi-
cations.

Lemma 5.2.2 (Efficiently preparing
√
WA in the Quantum Data Structure Model). Let W ∈ RN×N such that

W = diag(w1, w2 . . . wN ) and wmax := maxi wi, and A ∈ RN×d be stored in a quantum-accessible data structure.
Then for any δ > 0 there exists a

(
√
wmax∥A∥F , ⌈log (N + d)⌉, δ)

block-encoding of
√
WA that can be implemented at the cost O(polylog(Nd/δ)).

Proof. ∀j ∈ [N ], define

|ψj⟩ :=
√

wj

wmax
|j⟩ 1

∥Aj,·∥
∑
k∈[d]

Aj,k |k⟩ .

Similarly, ∀k ∈ [d], define

|ϕk⟩ :=
1

∥A∥F

∑
j∈[N ]

∥Aj,·∥ |j⟩

 |k⟩ .

Observe that ∀j ∈ [N ], k ∈ [d],

⟨ψj |ϕk⟩ =
√

wj

wmax

Aj,k

∥A∥F
=

⟨j|
√
WA |k⟩

√
wmax∥A∥F

.

Given quantum data structure accesses to W and A, once can construct quantum circuits WR and WL similar
to UL and UR from Lemma 2.4.4 that prepare |ϕk⟩ and |ψj⟩ above. |ϕk⟩ can be prepared just as in Lemma 2.4.4,
while |ψj⟩ can be prepared using controlled rotations on the state | wj

wmax
⟩ (which can be constructed from the

QRAM access to W ) after adding an ancilla qubit and the QRAM access to A. Thus, W †
RWL is the required

block encoding, which according to Theorem 2.4.3 can be implemented using polylog(Nd/δ) queries.

Lemma 5.2.3 (Efficiently preparing
√
W |b⟩ in the Quantum Data Structure Model). Let b ∈ RN and W ∈

RN×N . Suppose that b and W are stored in a quantum-accessible data structure such that we have a state
preparation procedure that acts as

UW : |j⟩ |0⟩ 7→ |j⟩ |wj⟩ ,

Ub : |0⟩ 7→
∑
j

bj
∥b∥

|j⟩ .

Then for any δ > 0 we can prepare the quantum state that is δ-close to
√
W |b⟩

∥√W |b⟩∥ with constant success probability

and at a cost of O
(√

wmax

wmin
polylog

(
N
δ

))
.

Proof. Use Ub to prepare the state

|b⟩ = 1

∥b∥
∑
j

bj |j⟩

in time polylog(N). Then, apply the following transformation

|j⟩ |0⟩ |0⟩ 7→ |j⟩ |wj⟩ |0⟩
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7→ |j⟩ |wj⟩
(√

wj

wmax
|0⟩+

√
1− wj

wmax
|1⟩
)

7→ |j⟩ |0⟩
(√

wj

wmax
|0⟩+

√
1− wj

wmax
|1⟩
)

which can again be applied using some controlled rotations, a square root circuit and UW . This gives us the
state (ignoring some blank registers)∑

j

(√
wj

wmax
|0⟩+

√
1− wj

wmax
|1⟩
)

bj
∥b∥

|j⟩ . (5.2.11)

The probability for the ancilla to be in |0⟩ state is

Ω

(
wmin

wmax

)
.

Thus performing O
(√

wmax

wmin

)
rounds of amplitude amplification on |0⟩ gives us a constant probability of ob-

serving |0⟩, and therefore obtaining the desired state
√
W |b⟩

∥√W |b⟩∥ .

Using the above two theorems, and the quantum OLS solver (Theorem 5.1.2), we can construct an algorithm
for regularized quantum WLS.

Theorem 5.2.4 (Quantum Weighted Least Squares with General ℓ2-Regularization in the Quantum Data
Structure Model). Let A,L ∈ RN×d with effective condition numbers κA, κL respectively be stored in an efficient
quantum accessible data structure. Let W ∈ RN×N be a diagonal matrix with largest and smallest singular values
wmax, wmin respectively, which is also stored in an efficient quantum accessible data structure. Furthermore,
suppose the entries of the vector b ∈ RN are also stored in a quantum-accessible data structure and define,

κ := κL

(
1 +

√
wmax∥A∥√
λ∥L∥

)
Then for any δ > 0 we can prepare a quantum state that is δ-close to

(ATWA+ λLTL)−1ATW |b⟩
∥(ATWA+ λLTL)−1ATW |b⟩∥

with probability Θ(1), at a cost of

O

(
κ

(√
wmax∥A∥F +

√
λ∥L∥F√

wmax∥A∥+
√
λ∥L∥

+

√
wmax

wmin

)
polylog

(
Nd, κ,

1

δ

))
(5.2.12)

Proof. Choose some precision parameter ε > 0 for accessing the data structure. Given accesses to W and A,
we can use Lemma 5.2.2 for some ε > 0 to prepare a (

√
wmax∥A∥F , ⌈log (N + d)⌉, ε)-block-encoding of

√
WA,

using TA := O(polylog (Nd/ε)) queries to the data structure.
Similarly, Lemma 2.4.4 allows us to build a (∥L∥F , ⌈log (N + d)⌉, ε)-block-encoding of L using TL :=

O(polylog(Nd/ε)) queries to the data structure.
Next, using Lemma 5.2.3, for any εb > 0, we can prepare a state εb-close to |b′⟩ :=

√
W |b⟩

∥√W |b⟩∥ . This procedure

requires Tb := O
(√

wmax

wmin
polylog (N/εb)

)
queries to the data structure. Now we can invoke the OLS solver in

Theorem 5.1.2 with a precision of δb, by considering
√
WA as the data matrix and

√
W |b⟩

∥√W |b⟩∥ as the input state.

In order for the input block-encoding precision to satisfy the bound in Equation 5.1.7, we choose ε such that

ε = o

 δb

κ3 log2
(

κ
δb

)
 .

Finally, for the output state to be δ-close to the required state, we choose δb = δ/2 and εb = δ/2κ to use the
robustness result from Lemma 3.1.5. This gives us

log

(
1

ε

)
= O

log

κ3 log2
(

κ
δb

)
δb
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= O
(
log
(κ
δ

))
Now we can substitute the cost of the individual components in Equation 5.1.8 to obtain the final cost as

O

(
κ log κ

(√
wmax∥A∥F +

√
λ∥L∥F√

wmax∥A∥+
√
λ∥L∥

log
(κ
δ

)
polylog

(
Nd

ε

)
+

√
wmax

wmin
polylog

(
Nκ

δ

)))

= O

(
κ

(√
wmax∥A∥F +

√
λ∥L∥F√

wmax∥A∥+
√
λ∥L∥

+

√
wmax

wmin

)
polylog

(
Ndκ

δ

))

Now, for the sparse access model, we can obtain a block encoding similar to Lemma 5.2.2 and a quantum state
similar to Lemma 5.2.3, with the same query complexities. Thus we have an algorithm similar to Theorem 5.2.4
in the sparse access model as well. We directly state the complexity of this algorithm.

Theorem 5.2.5 (Quantum Weighted Least Squares with General ℓ2-Regularization in the Sparse Access
Model). Let A ∈ RN×d be (sAr , s

A
c ) row-column sparse, and similarly, let L ∈ RN×d be (sLr , s

L
c ) row-column

sparse, with effective condition numbers κA and κL respectively. Let λ ∈ R+. Let W ∈ RN×N be a diagonal
matrix with the largest and the smallest diagonal entries being wmax, wmin, respectively. Suppose that the di-
agonal entries of W are stored in a QROM such that, for any δ > 0, we can compute |j⟩ 0 7→ |j⟩ |wj⟩ in cost
O (polylog (Nd/δ)) as well as wmax. Furthermore, suppose there exists a unitary that prepares |b⟩ at a cost Tb
and define,

κ := κL

(
1 +

√
wmax∥A∥√
λ∥L∥

)
Then for any δ > 0 we can prepare a quantum state that is δ-close to

(ATWA+ λLTL)−1ATW |b⟩
∥(ATWA+ λLTL)−1ATW |b⟩∥

with probability Θ(1), at a cost of

O

(
κ

(√
wmax

√
sAr s

A
c +

√
λ
√
sLr s

L
c√

wmax∥A∥+
√
λ∥L∥

+

√
wmax

wmin
Tb

)
polylog

(
Nd, κ,

1

δ

))
(5.2.13)

5.2.2 Regularized Quantum Generalized Least Squares
In this section, we assume that we have block-encoded access to the correlation matrix Ω ∈ RN×N , with
condition number κΩ. We begin by preparing a block encoding of Ω−1/2, given an approximate block-encoding
of Ω.

Lemma 5.2.6 (Preparing Ω−1/2). Let Ω ∈ RN×N be a matrix with condition number κΩ Let UΩ be an
(αΩ, aΩ, εΩ)-block-encoding of Ω, implemented in time TΩ. For any δ such that

εΩ = o


√
∥Ω∥δ

κ1.5 log

(
κ√
∥Ω∥δ

)
 ,

we can prepare a (2
√
κΩ/∥Ω∥, aΩ + 1, δ)-block-encoding of Ω−1/2 at a cost of

O

(
αΩκΩ
∥Ω∥

log

(
κΩ

δ
√

∥Ω∥

)
TΩ

)

Moreover, the condition number of Ω−1/2 is bounded by
√
κΩ.

Proof. UΩ can be re-interpreted as a ( α
∥Ω∥ , a,

ε
∥Ω∥ )-block-encoding of Ω

∥Ω∥ . We can then prepare the required
unitary by invoking Theorem 3.4.2 on UΩ with c = 1/2 and some γ such that we get a (2

√
κΩ, a+ 1, γ) block

encoding of
√

∥Ω∥Ω−1/2, which is a (2
√

κ
∥Ω∥ , a+ 1, γ√

∥Ω∥
) block encoding of Ω−1/2. Fixing γ =

√
∥Ω∥δ gives

us the required result.
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We will now use this lemma in conjunction with Theorem 5.1.2 to develop quantum algorithms for GLS
with general ℓ2-regularization.

Theorem 5.2.7 (Quantum Generalized Least Squares with General ℓ2-regularization). Let A,L ∈ RN×d be the
data and penalty matrices with effective condition numbers κA, κL respectively. Let Ω ∈ RN×N be the covariance
matrix with condition number κΩ. Let δ > 0 be the precision parameter. Define κ as

κ := κL

(
1 +

√
κΩ∥A∥√
λ∥Ω∥∥L∥

)
.

For some εA such that

εA = o

(
δ
√
∥Ω∥

κ3
√
κΩ log2 κ

δ

)
we have access to UA, an (αA, aA, εA)-block-encoding of A implemented in time TA. For some εL such that

εL = o

(
δ√

λκ3 log2 κ
δ

)
we have access to UL, an (αL, aL, εL)-block-encoding of L implemented in time TL. For some εΩ such that

εΩ = o

 δ

∥A∥κ3κΩ1.5 log3 κ
δ log

(
κΩ

∥A∥∥Ω∥

)


we have access to UΩ, an (αΩ, aΩ, εΩ)-block-encoding of Ω implemented in time TΩ. Let Ub be a unitary that
prepares the state |b⟩ in time Tb.

Then we can prepare the quantum state that is δ-close to(
ATΩ−1A+ λLTL

)−1
ATΩ−1 |b⟩∥∥∥(ATΩ−1A+ λLTL)

−1
ATΩ−1 |b⟩

∥∥∥
with probability Θ(1), at a cost of

O
(
κ
√
κΩ log κ

((
αA

∥A∥
TA +

αL

∥L∥
TL +

αΩκΩ
∥Ω∥

TΩ

)
log3

(
κκΩ∥A∥∥L∥

δ∥Ω∥

)
+ Tb

))
(5.2.14)

using only O(log κ) additional qubits.

Proof. Observe that by choosing A′ := Ω−1/2A,L′ := L, |b′⟩ := Ω−1/2 |b⟩ (upto normalization) in the quantum
ordinary least squares, we get a state proportional to (A′TA′+λL′TL′)−1A′T |b′⟩ = (ATΩ−1A+λLTL)ATΩ−1 |b⟩,
which is the desired state.

For convenience, let us define the matrix B := Ω−1/2 (and therefore κB =
√
κΩ and ∥B∥ =

√
κΩ/∥Ω∥).

We now need to prepare a block-encoding of BA and the quantum state B|b⟩
∥B|b⟩∥ , which we then use to invoke

Theorem 5.1.2.
We begin by using Lemma 5.2.6 with some precision εB to construct a (αB , aB , εB)-block-encoding of

B = Ω−1/2, where αB = 2
√

κΩ

∥Ω∥ = 2∥B∥, and aB = aΩ + 1. This bounds εΩ as

εΩ = o


√

∥Ω∥εB

κΩ1.5 log

(
κΩ√
∥Ω∥εB

)
 ,

and has a cost of

TB := O

(
αΩκΩ
∥Ω∥

log

(
κΩ

εB
√

∥Ω∥

)
TΩ

)
Then using Lemma 3.2.5 with precision γ satisfying γ ≥ 4

√
2max (∥B∥εA, ∥A∥εB), we get a

(2∥A∥∥B∥, aA + aB + 3, γ)-block-encoding of A′ := BA = Ω−1/2A at a cost

TA′ := O
((

αA

∥A∥
TA +

αB

∥B∥
TB

)
log

(
∥A∥∥B∥

γ

))
.
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To prepare B|b⟩
∥B|b⟩∥ , we use Lemma 3.1.3 with precision εb ≥ 2εBκB/∥B∥. This prepares a state that is

εb-close to |b′⟩ := B|b⟩
∥B|b⟩∥ with constant success probability at a cost of

Tb′ := O
(
αBκB
∥B∥

(TB + Tb)

)
= O(κB(TB + Tb))

We could invoke OLS directly using the above two, but that ends up with a product of sub-normalization
factors (α terms) in the complexity. We want to avoid this, because in most common cases α-s for block-
encodings are quite large. So we also pre-amplify UL using Corollary 3.1.2: for any δL ≥ 2εL we get a
(
√
2∥L∥, aL + 1, δL)-encoding of L at a cost of

TL′ := O
(
αL

∥L∥
TL log

(
∥L∥
δL

))
.

Now that we have these, we can use Theorem 5.1.2 to get a quantum state δ′-close to |ψ⟩ := A+
L |b′⟩

∥A+
L |b′⟩∥ , where

A+
L = (ATΩ−1A+ λLTL)−1ATΩ−1/2. This would require that γ,

√
λδL ∈ o

(
δ′

κ3 log2( κ
δ′ )

)
and would cost

O

(
κ log κ

((
2∥A∥∥B∥+

√
2λ∥L∥

∥BA∥+
√
λ∥L∥

)
log
( κ
δ′

)
(TA′ + TL′) + Tb′

))
.

To simplify the ratio of norms term, we can first lower-bound ∥BA∥ ≥ ∥A∥/
∥∥B−1

∥∥ = ∥A∥/
√
∥Ω∥. And

as ∥B∥ =
√
κΩ/∥Ω∥, the whole term can be simplified to O

(√
κΩ
)
. This simplifies the cost expression to

O
(
κ log κ

(√
κΩ log (κ/δ′) (TA′ + TL′) + Tb′

))
.

We can compute the error between |ψ⟩ and the expected state by using Lemma 3.1.5. For the final error to
be δ, we have to choose εb = δ/2κ and δ′ = δ/2. Therefore

εB ≤ εb∥B∥
4κB

= Θ

(
δ

κ
√
∥Ω∥

)

γ,
√
λδL ∈ o

(
δ

κ3 log2(κ/δ)

)
=⇒ log

(
1

γ

)
= o

(
log
(κ
δ

))
, log

(
1

δL

)
= o

(
log

(√
λκ

δ

))

εA = o

(
γ

∥B∥

)
, εB = o

(
γ

∥A∥

)
Combining both bounds of εB by using sums or products, we can effectively bound

εΩ = o

 δ

∥A∥κ3κΩ1.5 log3 κ
δ log

(
κΩ

∥A∥∥Ω∥

)


Finally for the final costs, we calculate the respective coefficients of terms TA, TΩ, TL and Tb, (excluding
the common factor of κ

√
κΩ log κ for brevity). Let us label these “coefficient extraction” functions as C with

matching subscripts, and the total cost as T .

CA(T ) = O
(
log
(κ
δ

)
CA(TA′)

)
= O

(
log
(κ
δ

) αA

∥A∥
log

(
∥A∥∥B∥

γ

))
= O

(
αA

∥A∥
log2

(
κκΩ∥A∥
δ∥Ω∥

))
CL(T ) = O

(
log
(κ
δ

)
CL(TL′)

)
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= O
(
log
(κ
δ

) αL

∥L∥
log

(
∥L∥
δL

))
= O

(
αL

∥L∥
log2

(
κ∥L∥
δ

))
CΩ(T ) = O

(
log
(κ
δ

)
CΩ(TA′) +

CΩ(Tb′)√
κΩ

)
= O

((
log
(κ
δ

)
log

(
∥A∥∥B∥

γ

)
+ 1

)
CΩ(TB)

)
= O

(
log2

(
κκΩ∥A∥
δ∥Ω∥

)
αΩκΩ
∥Ω∥

log

(
κΩ

εB
√

∥Ω∥

))

= O
(
αΩκΩ
∥Ω∥

log3
(
κκΩ∥A∥
δ∥Ω∥

))
Cb(T ) = O

(
CΩ(Tb′)√

κΩ

)
= O(1)

And hence the final complexity is given by the expression

T = O(κ
√
κΩ log κ (CA(T ) · TA + CL(T ) · TL + CΩ(T ) · TΩ + Cb(T ) · Tb))

= O
(
κ
√
κΩ log κ

(
αA

∥A∥
log2

(
κκΩ∥A∥
δ∥Ω∥

)
TA +

αL

∥L∥
log2

(
κ∥L∥
δ

)
TL +

αΩκΩ
∥Ω∥

log3
(
κκΩ∥A∥
δ∥Ω∥

)
TΩ + Tb

))
= O

(
κ
√
κΩ log κ

((
αA

∥A∥
TA +

αL

∥L∥
TL +

αΩκΩ
∥Ω∥

TΩ

)
log3

(
κκΩ∥A∥∥L∥

δ∥Ω∥

)
+ Tb

))

One immediate observation is that for the special case of the (unregularized) quantum GLS problem (when
L = 0 and λ = 0), our algorithm has a slightly better complexity than [35] and requires fewer additional
qubits. Now, we will state the complexities of this algorithm in specific input models, namely the quantum data
structure model and the sparse-access input model.

Corollary 5.2.8 (Quantum Generalized Least Squares with General ℓ2-Regularization in the Quantum Data
Structure Model). Let A,L ∈ RN×d be the data and penalty matrices with effective condition numbers κA, κL
respectively. and Ω ∈ RN×N be the covariance matrix with condition number κΩ. Let the matrices A,L,Ω and
the vector b be stored in a quantum-accessible data structure. Define κ as

κ := κL

(
1 +

√
κΩ∥A∥√
λ∥Ω∥∥L∥

)

Then for any δ > 0, we can prepare the quantum state that is δ-close to(
ATΩ−1A+ λLTL

)−1
ATΩ−1 |b⟩∥∥∥(ATΩ−1A+ λLTL)

−1
ATΩ−1 |b⟩

∥∥∥
with probability Θ(1), at a cost of

O
(
κ
√
κΩ

(
µA

∥A∥
+

µL

∥L∥
+
κΩµΩ

∥Ω∥

)
polylog

(
Nd, κ,

1

δ
,
κΩ
∥Ω∥

, ∥A∥, ∥L∥, λ
))

(5.2.15)

Proof. The proof is very similar to Corollary 5.1.4 with the extra input of Ω. We can use the data structure
to prepare the block-encodings for A,L,Ω and the state |b⟩, with precisions εA, εL, εΩ, εb respectively. We
invoke Theorem 5.2.7 with a precision of δb, and choose the above ε terms to be equal to their corresponding
upper-bounds. And finally we use Lemma 3.1.5 with εb = δ/2κ and δb = δ/2 to get the final error as δ.

Now, µA = ∥A∥F (similarly for µL and µΩ). As ∥A∥F ≤
√
r(A)∥A∥, where r(A) is the rank of A, we have

that the complexity of Corollary 5.2.8 can be re-expressed as

O
(
κ
√
κΩ

(√
r(A) +

√
r(L) +

√
r(Ω)κΩ

)
polylog

(
Ndκ

δ

))
. (5.2.16)
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Corollary 5.2.9 (Quantum Generalized Least Squares with General ℓ2-Regularization in the Sparse Access
Model). Let A ∈ RN×d be a (sAr , s

A
c ) row-column sparse data matrix. Let L ∈ RN×d be a (sLr , s

L
c ) row-column

sparse penalty matrix. Let Ω ∈ RN×N be a (sΩr , s
Ω
c ) row-column sparse covariance matrix. Suppose we have a

procedure to prepare |b⟩ in cost Tb. Define κ as

κ := κL

(
1 +

√
κΩ∥A∥√
λ∥Ω∥∥L∥

)

Then for any δ > 0, we can prepare the quantum state that is δ-close to(
ATΩ−1A+ λLTL

)−1
ATΩ−1 |b⟩∥∥∥(ATΩ−1A+ λLTL)

−1
ATΩ−1 |b⟩

∥∥∥
with probability Θ(1), at a cost of

O

(
κ
√
κΩ

(√
sAr s

A
c

∥A∥
+

√
sLr s

L
c

∥L∥
+
κΩ
√
sΩr s

Ω
c

∥Ω∥
+ Tb

)
polylog

(
Nd, κ,

1

δ
,
κΩ
∥Ω∥

, ∥A∥, ∥L∥, λ
))

(5.2.17)

Proof. The algorithm is similar to Corollary 5.2.8, but with αA =
√
sAr s

A
c , αL =

√
sLr s

L
c , αΩ =

√
sΩr s

Ω
c .
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Chapter 6

Conclusion and Future Directions

In this work we have developed quantum algorithms for regularized ordinary, weighted and generalized least
squares. In the process, we have improved various other quantum algorithms commonly used in the literature.
QSVT is a novel approach to quantum algorithms, and to the best of our knowledge this work was the first
piece of literature to highlight the robustness of all the algorithms designed using it. The primitives we have
developed, and our approach to designing the algorithms might be of independent interest to the community,
specially in the domain of quantum machine learning (QML), where such quantum linear algebra subroutines
(QLAS) are frequently used. QSVT is an interesting framework to analyze applications and limitations of
quantum computation, and is known to produce algorithms often matching the previous SoTA or beating them.
The generality of the block-encoding model also implies quantum algorithms in other input models (a fact also
highlighted in chapter 5). However, due to the nature of the framework involving applications of controlled
unitaries and the dependence of the algorithms on the block-encoding parameter (α), this might not be a good
candidate for near term implementations.

Our algorithms for quantum linear regression with general ℓ2-regularization made use of QSVT to implement
various several matrix operations. However, it is possible to use QSVT directly to obtain the solution to quantum
ridge regression. This requires computing a polynomial approximation for the transformation σ 7→ σ/(σ2 + λ),
to be applied on the singular values of A, which lie between [1/κA, 1]. However, it is unclear how to extend
this while considering general ℓ2-regularization. For instance, even when the data matrix and the penalty
matrix share the same right singular vectors, this approach involves obtaining polynomial approximations to
directly implement transformations of the form σ 7→ σ/(σ2 + λσ̃2), where σ̃ is a singular value of the penalty
matrix L. A monomial is no longer sufficient to approximate this quantum singular value transformation. It
would be interesting to explore whether newly developed ideas of M-QSVT [70] can be used to implement such
transformations directly with improved complexity.

While developing quantum machine learning algorithms, it is important to point out the caveats, even
at the risk of being repetitive [28]. Our quantum algorithms output a quantum state |x⟩ whose amplitudes
encode the solution of the classical (regularized) linear regression problem. While given access to the data
matrix and the penalty matrix, we achieve an exponential advantage over classical algorithms, this advantage
is not generic. If similar assumptions (ℓ2-sample and query access) are provided to a classical device, Gilyén
et al. developed a quantum algorithm [41] for ridge regression (building upon [71]) which has a running
time in O(poly(κ, rank(A), 1/δ)), which implies that any quantum algorithm for this problem can be at most
polynomially faster in κ. One might posit that similar quantum-inspired classical algorithms for general ℓ2-
regression can also be developed.

Another future direction of research would be to recast our algorithms in the framework of adiabatic quantum
computing (AQC) following the works of [72, 73]. Quantum algorithms for linear systems in this framework
have the advantage that a linear dependence on κ can be obtained without using complicated subroutines like
variable-time amplitude amplification. The strategy is to implement these problems in the AQC model and then
use time-dependent Hamiltonian simulation [74] to obtain their complexities in the circuit model. One caveat is
that, so far, time-dependent Hamiltonian simulation algorithms have only been developed in the sparse-access
model and therefore the advantage of the generality of the block-encoding framework is lost.

In the future, it would also be interesting to explore other quantum algorithms for machine learning such
as principal component regression and linear support vector machines [75] using QSVT. Finally, following the
results of [40], it would be interesting to investigate techniques for quantum machine learning that do not require
the quantum linear systems algorithm as a subroutine.
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Appendix A

Miscellaneous Algorithms

A.1 Using controlled rotations to modify phases
In this section we show how to shift the contents of a resister to phases of an ancillary qubit. Specifically, we
show how to apply the following transformation

|0⟩ |θ⟩ 7→ [cos(πθ) |0⟩+ sin(πθ) |1⟩] |θ⟩ . (A.1.1)

Theorem A.1.1. Let θ = 0.θd−1θd−2 . . . θ0 be a d-bit representation of θ. Then there exists a unitary Uθ acting
on d+ 1-qubits that performs the transformation in Equation A.1.1.

Proof. For the Pauli-y matrix

σy :=

(
0 −i
i 0

)
,

observe that
exp(−iτσy) = cos τI − i sin τσyRy(τ), (A.1.2)

is a single qubit rotation around the y axis. Apply a series of controlled-y rotations on the ancilla qubit,
controlled first on the d− 1 qubit, then on d− 2, and so on, by angles π

2 ,
π
22 , . . .

π
2d

. This gives us the required
transformation. The circuit diagram is given in Figure A.1.

|0⟩ Ry(
π
2 ) Ry(

π
22 ) · · · Ry(

π
2d
)

|θd−1⟩ • · · ·
|θd−2⟩ • · · ·

...
...

|θ0⟩ · · · •

Figure A.1: Circuit diagram for Equation A.1.1

A.2 Closed-form Solution for OLS
We have to show that assuming (ATA) is non-singular, f(x) := ∥Ax− b∥2 is minimized at x = (ATA)−1AT b.

Proof.

f(x) := ∥Ax− b∥2 (A.2.1)

= (Ax− b)T (Ax− b) (A.2.2)

= xTATAx− xTAT b− bTAx+ bT b (A.2.3)

=⇒ ∇f(x) = 2ATAx− 2AT b (A.2.4)

Setting ∇f(x) = 0 gives us
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2ATAx− 2AT b = 0 (A.2.5)

=⇒ (ATA)x = AT b (A.2.6)

=⇒ x = (ATA)−1AT b (A.2.7)

51



Bibliography

[1] David Deutsch. The beginning of infinity: Explanations that transform the world. Penguin UK, 2011.

[2] Scott Aaronson. The complexity of quantum states and transformations: From quantum money to black
holes, 2016. URL https://arxiv.org/abs/1607.05256.

[3] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012. URL https://mitpress.
mit.edu/books/machine-learning-1.

[4] Jonathan R Shewchuk. An introduction to the conjugate gradient method without the agonizing pain.
Technical report, USA, 1994.

[5] H.W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems. Mathematics and Its Ap-
plications. Springer Netherlands, 1996. ISBN 9780792341574. URL https://link.springer.com/book/
9780792341574.

[6] William J. Hemmerle. An explicit solution for generalized ridge regression. Technometrics, 17(3):309–314,
1975. ISSN 00401706. URL http://www.jstor.org/stable/1268066.

[7] Martin Hanke and Per Christian Hansen. Regularization methods for large-scale problems. Surv. Math.
Ind, 3(4):253–315, 1993.

[8] Chris M. Bishop. Training with noise is equivalent to tikhonov regularization. Neural Computation, 7(1):
108–116, 1995. doi:10.1162/neco.1995.7.1.108.

[9] Gene H. Golub, Per Christian Hansen, and Dianne P. O’Leary. Tikhonov regularization and
total least squares. SIAM Journal on Matrix Analysis and Applications, 21(1):185–194, 1999.
doi:10.1137/S0895479897326432. URL https://doi.org/10.1137/S0895479897326432.

[10] Wessel N. van Wieringen. Lecture notes on ridge regression, 2015. URL https://doi.org/10.48550/
ARXIV.1509.09169.

[11] Arthur E. Hoerl and Robert W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics, 42(1):80–86, 2000. ISSN 00401706. URL http://www.jstor.org/stable/1271436.

[12] Donald W. Marquardt. Generalized inverses, ridge regression, biased linear estimation, and nonlinear
estimation. Technometrics, 12(3):591–612, 1970. ISSN 00401706. URL http://www.jstor.org/stable/
1267205.

[13] Hrishikesh D. Vinod. A survey of ridge regression and related techniques for improvements over ordinary
least squares. The Review of Economics and Statistics, 60(1):121–131, 1978. ISSN 00346535, 15309142.
URL http://www.jstor.org/stable/1924340.

[14] Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics,
21(6):467–488, Jun 1982. ISSN 1572-9575. doi:10.1007/BF02650179. URL https://doi.org/10.1007/
BF02650179.

[15] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information, 2010.

[16] David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation. Proceed-
ings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 439(1907):553–
558, 1992. doi:10.1098/rspa.1992.0167. URL https://royalsocietypublishing.org/doi/abs/10.1098/
rspa.1992.0167.

52

https://arxiv.org/abs/1607.05256
https://mitpress.mit.edu/books/machine-learning-1
https://mitpress.mit.edu/books/machine-learning-1
https://link.springer.com/book/9780792341574
https://link.springer.com/book/9780792341574
http://www.jstor.org/stable/1268066
https://doi.org/10.1162/neco.1995.7.1.108
https://doi.org/10.1137/S0895479897326432
https://doi.org/10.1137/S0895479897326432
https://doi.org/10.48550/ARXIV.1509.09169
https://doi.org/10.48550/ARXIV.1509.09169
http://www.jstor.org/stable/1271436
http://www.jstor.org/stable/1267205
http://www.jstor.org/stable/1267205
http://www.jstor.org/stable/1924340
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1098/rspa.1992.0167
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1992.0167
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1992.0167


BIBLIOGRAPHY

[17] null null, Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Sergio
Boixo, Michael Broughton, Bob B. Buckley, David A. Buell, Brian Burkett, Nicholas Bushnell, Yu Chen,
Zijun Chen, Benjamin Chiaro, Roberto Collins, William Courtney, Sean Demura, Andrew Dunsworth,
Edward Farhi, Austin Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Rob Graff, Steve Habegger,
Matthew P. Harrigan, Alan Ho, Sabrina Hong, Trent Huang, William J. Huggins, Lev Ioffe, Sergei V.
Isakov, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Seon Kim,
Paul V. Klimov, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Pavel Laptev, Mike Lindmark,
Erik Lucero, Orion Martin, John M. Martinis, Jarrod R. McClean, Matt McEwen, Anthony Megrant,
Xiao Mi, Masoud Mohseni, Wojciech Mruczkiewicz, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles
Neill, Hartmut Neven, Murphy Yuezhen Niu, Thomas E. O’Brien, Eric Ostby, Andre Petukhov, Harald
Putterman, Chris Quintana, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim
Smelyanskiy, Doug Strain, Kevin J. Sung, Marco Szalay, Tyler Y. Takeshita, Amit Vainsencher, Theodore
White, Nathan Wiebe, Z. Jamie Yao, Ping Yeh, and Adam Zalcman. Hartree-fock on a superconducting
qubit quantum computer. Science, 369(6507):1084–1089, 2020. doi:10.1126/science.abb9811. URL https:
//www.science.org/doi/abs/10.1126/science.abb9811.

[18] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, and
Jay M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum
magnets. Nature, 549(7671):242–246, sep 2017. doi:10.1038/nature23879. URL https://doi.org/10.
1038%2Fnature23879.

[19] P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan,
A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey,
E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner,
T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis. Scalable quantum
simulation of molecular energies. Phys. Rev. X, 6:031007, Jul 2016. doi:10.1103/PhysRevX.6.031007. URL
https://link.aps.org/doi/10.1103/PhysRevX.6.031007.

[20] J. I. Colless, V. V. Ramasesh, D. Dahlen, M. S. Blok, M. E. Kimchi-Schwartz, J. R. McClean, J. Carter,
W. A. de Jong, and I. Siddiqi. Computation of molecular spectra on a quantum processor with an error-
resilient algorithm. Phys. Rev. X, 8:011021, Feb 2018. doi:10.1103/PhysRevX.8.011021. URL https:
//link.aps.org/doi/10.1103/PhysRevX.8.011021.

[21] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. Quan-
tum machine learning. Nature, 549(7671):195–202, Sep 2017. ISSN 1476-4687. doi:10.1038/nature23474.
URL http://dx.doi.org/10.1038/nature23474.

[22] Nathan Wiebe, Daniel Braun, and Seth Lloyd. Quantum algorithm for data fitting. Phys. Rev. Lett., 109:
050505, Aug 2012. doi:10.1103/PhysRevLett.109.050505. URL https://doi.org/10.1103/PhysRevLett.
109.050505.

[23] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of equations.
Physical Review Letters, 103(15), Oct 2009. ISSN 1079-7114. doi:10.1103/physrevlett.103.150502. URL
https://doi.org/10.1103/physrevlett.103.150502.

[24] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal component analysis. Nature
Physics, 10(9):631–633, Sep 2014. ISSN 1745-2481. doi:10.1038/nphys3029. URL https://doi.org/10.
1038/nphys3029.

[25] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum support vector machine for big data
classification. Physical review letters, 113(13):130503, 2014.

[26] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Parameterized quantum circuits as
machine learning models. Quantum Science and Technology, 4(4):043001, Nov 2019. ISSN 2058-9565.
doi:10.1088/2058-9565/ab4eb5. URL https://dx.doi.org/10.1088/2058-9565/ab4eb5.

[27] Dominic W Berry. High-order quantum algorithm for solving linear differential equations. Journal of
Physics A: Mathematical and Theoretical, 47(10):105301, feb 2014. doi:10.1088/1751-8113/47/10/105301.
URL https://doi.org/10.1088%2F1751-8113%2F47%2F10%2F105301.

[28] Scott Aaronson. Read the fine print. Nature Physics, 11(4):291–293, Apr 2015. ISSN 1745-2481.
doi:10.1038/nphys3272. URL https://doi.org/10.1038/nphys3272.

53

https://doi.org/10.1126/science.abb9811
https://www.science.org/doi/abs/10.1126/science.abb9811
https://www.science.org/doi/abs/10.1126/science.abb9811
https://doi.org/10.1038/nature23879
https://doi.org/10.1038%2Fnature23879
https://doi.org/10.1038%2Fnature23879
https://doi.org/10.1103/PhysRevX.6.031007
https://link.aps.org/doi/10.1103/PhysRevX.6.031007
https://doi.org/10.1103/PhysRevX.8.011021
https://link.aps.org/doi/10.1103/PhysRevX.8.011021
https://link.aps.org/doi/10.1103/PhysRevX.8.011021
https://doi.org/10.1038/nature23474
http://dx.doi.org/10.1038/nature23474
https://doi.org/10.1103/PhysRevLett.109.050505
https://doi.org/10.1103/PhysRevLett.109.050505
https://doi.org/10.1103/PhysRevLett.109.050505
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.1088/2058-9565/ab4eb5
https://dx.doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1088/1751-8113/47/10/105301
https://doi.org/10.1088%2F1751-8113%2F47%2F10%2F105301
https://doi.org/10.1038/nphys3272
https://doi.org/10.1038/nphys3272


BIBLIOGRAPHY

[29] Ashley Montanaro and Sam Pallister. Quantum algorithms and the finite element method. Physical Review
A, 93(3), mar 2016. doi:10.1103/physreva.93.032324. URL https://doi.org/10.1103%2Fphysreva.93.
032324.

[30] Guoming Wang. Quantum algorithm for linear regression. Phys. Rev. A, 96:012335, Jul 2017.
doi:10.1103/PhysRevA.96.012335. URL https://doi.org/10.1103/PhysRevA.96.012335.

[31] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. Prediction by linear regression on a quantum
computer. Phys. Rev. A, 94:022342, Aug 2016. doi:10.1103/PhysRevA.94.022342. URL https://doi.
org/10.1103/PhysRevA.94.022342.

[32] Iordanis Kerenidis and Anupam Prakash. Quantum gradient descent for linear systems and least squares.
Phys. Rev. A, 101:022316, Feb 2020. doi:10.1103/PhysRevA.101.022316. URL https://doi.org/10.1103/
PhysRevA.101.022316.

[33] Anupam Prakash. Quantum Algorithms for Linear Algebra and Machine Learning. PhD thesis, EECS
Department, University of California, Berkeley, Dec 2014. URL http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2014/EECS-2014-211.html.

[34] Iordanis Kerenidis and Anupam Prakash. Quantum Recommendation Systems. In 8th Innovations in
Theoretical Computer Science Conference (ITCS 2017), volume 67 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 49:1–49:21, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. ISBN 978-3-95977-029-3. doi:10.4230/LIPIcs.ITCS.2017.49.

[35] Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. The Power of Block-Encoded Matrix Powers:
Improved Regression Techniques via Faster Hamiltonian Simulation. In Christel Baier, Ioannis Chatzigian-
nakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 33:1–33:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
ISBN 978-3-95977-109-2. doi:10.4230/LIPIcs.ICALP.2019.33.

[36] Guang Hao Low and Isaac L. Chuang. Hamiltonian simulation by qubitization. Quantum, 3:163, Jul 2019.
ISSN 2521-327X. doi:10.22331/q-2019-07-12-163. URL https://doi.org/10.22331/q-2019-07-12-163.

[37] Chao-Hua Yu, Fei Gao, and Qiao-Yan Wen. An improved quantum algorithm for ridge regression. IEEE
Transactions on Knowledge and Data Engineering, 33(3):858–866, 2021. doi:10.1109/TKDE.2019.2937491.

[38] Changpeng Shao and Hua Xiang. Quantum regularized least squares solver with parameter estimate.
Quantum Information Processing, 19(4):113, Feb 2020. ISSN 1573-1332. doi:10.1007/s11128-020-2615-9.
URL https://doi.org/10.1007/s11128-020-2615-9.

[39] Menghan Chen, Chaohua Yu, Gongde Guo, and Song Lin. Faster quantum ridge regression algorithm
for prediction. International Journal of Machine Learning and Cybernetics, Apr 2022. ISSN 1868-808X.
doi:10.1007/s13042-022-01526-6. URL https://doi.org/10.1007/s13042-022-01526-6.

[40] Yanlin Chen and Ronald de Wolf. Quantum algorithms and lower bounds for linear regression with norm
constraints. arXiv preprint, 2021. doi:10.48550/ARXIV.2110.13086.

[41] András Gilyén, Zhao Song, and Ewin Tang. An improved quantum-inspired algorithm for linear regression,
2020. URL https://doi.org/10.48550/ARXIV.2009.07268.

[42] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value transformation
and beyond: Exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019, page 193–204, New York, NY, USA,
2019. Association for Computing Machinery. ISBN 9781450367059. doi:10.1145/3313276.3316366. URL
https://doi.org/10.1145/3313276.3316366.

[43] Guang Hao Low and Isaac L. Chuang. Optimal hamiltonian simulation by quantum signal processing.
Phys. Rev. Lett., 118:010501, Jan 2017. doi:10.1103/PhysRevLett.118.010501. URL https://doi.org/
10.1103/PhysRevLett.118.010501.

[44] John M. Martyn, Zane M. Rossi, Andrew K. Tan, and Isaac L. Chuang. Grand unification of quantum
algorithms. PRX Quantum, 2:040203, Dec 2021. doi:10.1103/PRXQuantum.2.040203.

54

https://doi.org/10.1103/physreva.93.032324
https://doi.org/10.1103%2Fphysreva.93.032324
https://doi.org/10.1103%2Fphysreva.93.032324
https://doi.org/10.1103/PhysRevA.96.012335
https://doi.org/10.1103/PhysRevA.96.012335
https://doi.org/10.1103/PhysRevA.94.022342
https://doi.org/10.1103/PhysRevA.94.022342
https://doi.org/10.1103/PhysRevA.94.022342
https://doi.org/10.1103/PhysRevA.101.022316
https://doi.org/10.1103/PhysRevA.101.022316
https://doi.org/10.1103/PhysRevA.101.022316
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-211.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-211.html
https://doi.org/10.4230/LIPIcs.ITCS.2017.49
https://doi.org/10.4230/LIPIcs.ICALP.2019.33
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1109/TKDE.2019.2937491
https://doi.org/10.1007/s11128-020-2615-9
https://doi.org/10.1007/s11128-020-2615-9
https://doi.org/10.1007/s13042-022-01526-6
https://doi.org/10.1007/s13042-022-01526-6
https://doi.org/10.48550/ARXIV.2110.13086
https://doi.org/10.48550/ARXIV.2009.07268
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1103/PRXQuantum.2.040203


BIBLIOGRAPHY

[45] Andris Ambainis. Variable time amplitude amplification and quantum algorithms for linear algebra prob-
lems. In Christoph Dürr and Thomas Wilke, editors, 29th International Symposium on Theoretical As-
pects of Computer Science (STACS 2012), volume 14 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 636–647, Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
ISBN 978-3-939897-35-4. doi:10.4230/LIPIcs.STACS.2012.636.

[46] Andrew M. Childs, Robin Kothari, and Rolando D. Somma. Quantum algorithm for systems of linear equa-
tions with exponentially improved dependence on precision. SIAM Journal on Computing, 46(6):1920–1950,
Jan 2017. ISSN 1095-7111. doi:10.1137/16M1087072. URL https://doi.org/10.1137/16M1087072.

[47] Ronald de Wolf. Quantum computing: Lecture notes, 2019. URL https://arxiv.org/abs/1907.09415.

[48] Prof. Frederic Schuller. Lectures on quantum theory. https://www.youtube.com/playlist?list=PLPH7f_
7ZlzxQVx5jRjbfRGEzWY_upS5K6, 2016.

[49] David Elieser Deutsch and Roger Penrose. Quantum computational networks. Proceedings of the Royal Soci-
ety of London. A. Mathematical and Physical Sciences, 425(1868):73–90, 1989. doi:10.1098/rspa.1989.0099.
URL https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1989.0099.

[50] Paul Benioff. The computer as a physical system: A microscopic quantum mechanical hamiltonian model
of computers as represented by turing machines. Journal of Statistical Physics, 22(5):563–591, May 1980.
ISSN 1572-9613. doi:10.1007/BF01011339. URL https://doi.org/10.1007/BF01011339.

[51] Paul Benioff. Quantum mechanical models of turing machines that dissipate no energy. Phys. Rev. Lett.,
48:1581–1585, Jun 1982. doi:10.1103/PhysRevLett.48.1581. URL https://link.aps.org/doi/10.1103/
PhysRevLett.48.1581.

[52] J. Brooke, D. Bitko, T. F., null Rosenbaum, and G. Aeppli. Quantum annealing of a disordered magnet.
Science, 284(5415):779–781, 1999. doi:10.1126/science.284.5415.779. URL https://www.science.org/
doi/abs/10.1126/science.284.5415.779.

[53] Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded Regev. Adiabatic
quantum computation is equivalent to standard quantum computation. SIAM Journal on Computing, 37(1):
166–194, 2007. doi:10.1137/S0097539705447323. URL https://doi.org/10.1137/S0097539705447323.

[54] Tadashi Kadowaki and Hidetoshi Nishimori. Quantum annealing in the transverse ising model. Phys. Rev.
E, 58:5355–5363, Nov 1998. doi:10.1103/PhysRevE.58.5355. URL https://link.aps.org/doi/10.1103/
PhysRevE.58.5355.

[55] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, Andrew Lundgren, and Daniel Preda. A
quantum adiabatic evolution algorithm applied to random instances of an np-complete problem. Science,
292(5516):472–475, 2001. doi:10.1126/science.1057726. URL https://www.science.org/doi/abs/10.
1126/science.1057726.

[56] John Preskill. Quantum computing and the entanglement frontier. arXiv:1203.5813, 2012.
doi:10.48550/arXiv.1203.5813.

[57] Vasil S. Denchev, Sergio Boixo, Sergei V. Isakov, Nan Ding, Ryan Babbush, Vadim Smelyanskiy, John
Martinis, and Hartmut Neven. What is the computational value of finite-range tunneling? Phys. Rev.
X, 6:031015, Aug 2016. doi:10.1103/PhysRevX.6.031015. URL https://link.aps.org/doi/10.1103/
PhysRevX.6.031015.

[58] Joshua Job and Daniel Lidar. Test-driving 1000 qubits. Quantum Science and Technology, 3(3):030501,
2018.

[59] Sergio Boixo, Troels F Rønnow, Sergei V Isakov, Zhihui Wang, David Wecker, Daniel A Lidar, John M
Martinis, and Matthias Troyer. Evidence for quantum annealing with more than one hundred qubits.
Nature Physics, 10(3):218, 2014.

[60] Troels F. Rønnow, Zhihui Wang, Joshua Job, Sergio Boixo, Sergei V. Isakov, David Wecker, John M.
Martinis, Daniel A. Lidar, and Matthias Troyer. Defining and detecting quantum speedup. Science, 345
(6195):420–424, 2014. doi:10.1126/science.1252319. URL https://www.science.org/doi/abs/10.1126/
science.1252319.

55

https://doi.org/10.4230/LIPIcs.STACS.2012.636
https://doi.org/10.1137/16M1087072
https://doi.org/10.1137/16M1087072
https://arxiv.org/abs/1907.09415
https://www.youtube.com/playlist?list=PLPH7f_7ZlzxQVx5jRjbfRGEzWY_upS5K6
https://www.youtube.com/playlist?list=PLPH7f_7ZlzxQVx5jRjbfRGEzWY_upS5K6
https://doi.org/10.1098/rspa.1989.0099
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1989.0099
https://doi.org/10.1007/BF01011339
https://doi.org/10.1007/BF01011339
https://doi.org/10.1103/PhysRevLett.48.1581
https://link.aps.org/doi/10.1103/PhysRevLett.48.1581
https://link.aps.org/doi/10.1103/PhysRevLett.48.1581
https://doi.org/10.1126/science.284.5415.779
https://www.science.org/doi/abs/10.1126/science.284.5415.779
https://www.science.org/doi/abs/10.1126/science.284.5415.779
https://doi.org/10.1137/S0097539705447323
https://doi.org/10.1137/S0097539705447323
https://doi.org/10.1103/PhysRevE.58.5355
https://link.aps.org/doi/10.1103/PhysRevE.58.5355
https://link.aps.org/doi/10.1103/PhysRevE.58.5355
https://doi.org/10.1126/science.1057726
https://www.science.org/doi/abs/10.1126/science.1057726
https://www.science.org/doi/abs/10.1126/science.1057726
https://doi.org/10.48550/arXiv.1203.5813
https://doi.org/10.1103/PhysRevX.6.031015
https://link.aps.org/doi/10.1103/PhysRevX.6.031015
https://link.aps.org/doi/10.1103/PhysRevX.6.031015
https://doi.org/10.1126/science.1252319
https://www.science.org/doi/abs/10.1126/science.1252319
https://www.science.org/doi/abs/10.1126/science.1252319


BIBLIOGRAPHY

[61] Ewin Tang. A quantum-inspired classical algorithm for recommendation systems. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, page 217–228, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN 9781450367059. doi:10.1145/3313276.3316310.
URL https://doi.org/10.1145/3313276.3316310.

[62] Guang Hao Low, Theodore J. Yoder, and Isaac L. Chuang. Methodology of resonant equiangular composite
quantum gates. Phys. Rev. X, 6:041067, Dec 2016. doi:10.1103/PhysRevX.6.041067.

[63] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value transforma-
tion and beyond: exponential improvements for quantum matrix arithmetics. arXiv preprint, jun 2018.
doi:10.48550/arXiv.1806.01838. URL https://doi.org/10.48550/arXiv.1806.01838.

[64] Guang Hao Low and Isaac L Chuang. Hamiltonian simulation by uniform spectral amplification.
arXiv:1707.05391, 2017. doi:10.48550/ARXIV.1707.05391.

[65] Julia Kempe, Alexei Kitaev, and Oded Regev. The complexity of the local hamiltonian problem. SIAM
Journal on Computing, 35(5):1070–1097, 2006. doi:10.1137/S0097539704445226. URL https://doi.org/
10.1137/S0097539704445226.

[66] Yimin Ge, Jordi Tura, and J. Ignacio Cirac. Faster ground state preparation and high-precision
ground energy estimation with fewer qubits. Journal of Mathematical Physics, 60(2):022202, 2019.
doi:10.1063/1.5027484. URL https://doi.org/10.1063/1.5027484.

[67] Lin Lin and Yu Tong. Near-optimal ground state preparation. Quantum, 4:372, December 2020. ISSN
2521-327X. doi:10.22331/q-2020-12-14-372. URL https://doi.org/10.22331/q-2020-12-14-372.

[68] Guang Hao Low. Quantum signal processing by single-qubit dynamics. PhD thesis, Massachusetts Institute
of Technology, 2017. URL http://hdl.handle.net/1721.1/115025.

[69] Lin Lin and Yu Tong. Optimal polynomial based quantum eigenstate filtering with application to solving
quantum linear systems. Quantum, 4:361, November 2020. ISSN 2521-327X. doi:10.22331/q-2020-11-11-
361. URL https://doi.org/10.22331/q-2020-11-11-361.

[70] Zane M. Rossi and Isaac L. Chuang. Multivariable quantum signal processing (m-qsp): prophecies of the
two-headed oracle. arXiv preprint, 2022. doi:10.48550/ARXIV.2205.06261.

[71] Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang. Sampling-
Based Sublinear Low-Rank Matrix Arithmetic Framework for Dequantizing Quantum Machine Learning,
page 387–400. Association for Computing Machinery, New York, NY, USA, 2020. ISBN 9781450369794.
URL https://doi.org/10.1145/3357713.3384314.

[72] Lin Lin and Yu Tong. Optimal polynomial based quantum eigenstate filtering with application to solving
quantum linear systems. Quantum, 4:361, November 2020. ISSN 2521-327X. doi:10.22331/q-2020-11-11-
361. URL https://doi.org/10.22331/q-2020-11-11-361.

[73] Dong An and Lin Lin. Quantum linear system solver based on time-optimal adiabatic quantum computing
and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing, 3(2), mar
2022. ISSN 2643-6809. doi:10.1145/3498331. URL https://doi.org/10.1145/3498331.

[74] Guang Hao Low and Nathan Wiebe. Hamiltonian simulation in the interaction picture. arXiv preprint,
2018. doi:10.48550/arXiv.1805.00675.

[75] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum support vector machine for big data
classification. Phys. Rev. Lett., 113:130503, Sep 2014. doi:10.1103/PhysRevLett.113.130503.

56

https://doi.org/10.1145/3313276.3316310
https://doi.org/10.1145/3313276.3316310
https://doi.org/10.1103/PhysRevX.6.041067
https://doi.org/10.48550/arXiv.1806.01838
https://doi.org/10.48550/arXiv.1806.01838
https://doi.org/10.48550/ARXIV.1707.05391
https://doi.org/10.1137/S0097539704445226
https://doi.org/10.1137/S0097539704445226
https://doi.org/10.1137/S0097539704445226
https://doi.org/10.1063/1.5027484
https://doi.org/10.1063/1.5027484
https://doi.org/10.22331/q-2020-12-14-372
https://doi.org/10.22331/q-2020-12-14-372
http://hdl.handle.net/1721.1/115025
https://doi.org/10.22331/q-2020-11-11-361
https://doi.org/10.22331/q-2020-11-11-361
https://doi.org/10.22331/q-2020-11-11-361
https://doi.org/10.48550/ARXIV.2205.06261
https://doi.org/10.1145/3357713.3384314
https://doi.org/10.22331/q-2020-11-11-361
https://doi.org/10.22331/q-2020-11-11-361
https://doi.org/10.22331/q-2020-11-11-361
https://doi.org/10.1145/3498331
https://doi.org/10.1145/3498331
https://doi.org/10.48550/arXiv.1805.00675
https://doi.org/10.1103/PhysRevLett.113.130503

	Overview and Motivation
	Motivation
	Introduction
	Applications of Quantum Linear Algebra
	Simulating Quantum Systems
	Quantum Machine Learning
	Solving Linear Differential Equations

	Prior Work
	Research Focus and Contributions
	Outline of the Thesis
	Notation

	Background
	Linear Regression and Regularization
	Ordinary Least Squares
	Weighted Least Squares
	Generalized Least Squares
	Regularization of Linear Systems

	A Gentle Introduction to Quantum Mechanics
	Models of Quantum Computing
	Circuit Model of Quantum Computation
	Adiabatic Quantum Computing

	Quantum Input Models
	Unitary Block Encoding of Matrices
	QROM Input Model
	Sparse Access Input Model

	Quantum Singular Value Transformation
	Variable Time Amplitude Amplification

	Algorithmic Primitives
	Amplification of Block Encodings
	Arithmetic with Block-Encoded Matrices
	Robust Quantum Singular Value Discrimination
	Negative Powers of Matrices using QSVT

	Quantum Linear Systems Algorithms
	Harrow-Hassidim-Lloyd (HHL) Algorithm
	Adiabatic Quantum Algorithm for Solving Linear Systems
	Variable Time Quantum Linear Systems Algorithm using QSVT

	Regularized Quantum Regression
	Quantum Ordinary Least Squares with General Tikhonov Regularization
	Quantum Ordinary Least Squares

	Regularized Quantum Weighted And Generalized Least Squares
	Regularized Quantum Weighted Least Squares
	Regularized Quantum Generalized Least Squares


	Conclusion and Future Directions
	Miscellaneous Algorithms
	Using controlled rotations to modify phases
	Closed-form Solution for OLS


